精英家教网 > 高中数学 > 题目详情
设矩阵M=
a0
0b
(其中a>0,b>0),若曲线C:x2+y2=1在矩阵M所对应的变换作用下得到曲线C′ : 
x2
4
+y2=1
,求a+b的值.
分析:设P(x,y)是曲线C:x2+y2=1上的任意一点,P′(x′,y′)为曲线C′ : 
x2
4
+y2=1
上与P对应的点,根据题意建立(x,y)于(x′,y′)的等量关系,由此能够求出a和b的值,即可求出所求.
解答:解:设P(x,y)是曲线C:x2+y2=1上的任意一点,P′(x′,y′)为曲线C′ : 
x2
4
+y2=1
上与P对应的点,
a0
0b
 
x 
y 
=
x′ 
y′ 
,即
x′=ax
y′=by

代入
x2
4
+y2=1
得(
(ax′)2
4
+(by′)2=1,这与x2+y2=1是同一方程,
∴a=2,b=1,则a+b=3.
点评:本题主要考查了矩阵的变换,解题时要认真审题,注意矩阵变换性质的灵活运用.属于基础题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

本题设有(1)、(2)、(3)三个选考题,每题7分,请考生任选2题作答,满分14分,如果多做,则按所做的前两题计分,作答时,先用2B铅笔在答题卡上把所选题目对应的题号涂黑,并将所选题号填入括号中.
(1)选修4-2:矩阵与变换
设矩阵 M=
a0
0b
(其中a>0,b>0).
(Ⅰ)若a=2,b=3,求矩阵M的逆矩阵M-1
(Ⅱ)若曲线C:x2+y2=1在矩阵M所对应的线性变换作用下得到曲线C′:
x2
4
+y2=1
,求a,b的值.
(2)(本小题满分7分)选修4-4:坐标系与参数方程
在直接坐标系xOy中,直线l的方程为x-y+4=0,曲线C的参数方程为
x=
3
cos∂
y=sin∂
(∂为参数)

(Ⅰ)已知在极坐标(与直角坐标系xOy取相同的长度单位,且以原点O为极点,以x轴正半轴为极轴)中,点P的极坐标为(4,
π
2
),判断点P与直线l的位置关系;
(Ⅱ)设点Q是曲线C上的一个动点,求它到直线l的距离的最小值.
(3)(本小题满分7分)选修4-5:不等式选讲
设不等式|2x-1|<1的解集为M.
(Ⅰ)求集合M;
(Ⅱ)若a,b∈M,试比较ab+1与a+b的大小.

查看答案和解析>>

科目:高中数学 来源: 题型:

设矩阵M=
.
a0
0b
.
(其中a>0,b>0)
(1)若a=2,b=3.求矩阵M的逆矩阵M-1
(2)若曲线C:x2+y2=1在矩阵M所对应的线性变换作用下得到曲线C′:
x2
4
+y2=1,求a,b的值.

查看答案和解析>>

科目:高中数学 来源:福建 题型:解答题

本题设有(1)、(2)、(3)三个选考题,每题7分,请考生任选2题作答,满分14分,如果多做,则按所做的前两题计分,作答时,先用2B铅笔在答题卡上把所选题目对应的题号涂黑,并将所选题号填入括号中.
(1)选修4-2:矩阵与变换
设矩阵 M=
a0
0b
(其中a>0,b>0).
(I)若a=2,b=3,求矩阵M的逆矩阵M-1
(II)若曲线C:x2+y2=1在矩阵M所对应的线性变换作用下得到曲线C’:
x2
4
+y2=1
,求a,b的值.
(2)(本小题满分7分)选修4-4:坐标系与参数方程
在直接坐标系xOy中,直线l的方程为x-y+4=0,曲线C的参数方程为
x=
3
cos∂
y=sin∂
(∂为参数)

(I)已知在极坐标(与直角坐标系xOy取相同的长度单位,且以原点O为极点,以x轴正半轴为极轴)中,点P的极坐标为(4,
π
2
),判断点P与直线l的位置关系;
(II)设点Q是曲线C上的一个动点,求它到直线l的距离的最小值.
(3)(本小题满分7分)选修4-5:不等式选讲
设不等式|2x-1|<1的解集为M.
(I)求集合M;
(II)若a,b∈M,试比较ab+1与a+b的大小.

查看答案和解析>>

同步练习册答案