精英家教网 > 高中数学 > 题目详情

【题目】设函数f(x)=x3﹣3x+5,若关于x的方程f(x)=a至少有两个不同实根,则a的取值范围是

【答案】[3,7]
【解析】解:令g(x)=f(x)﹣a=x3﹣3x+5﹣a 对函数求导,g′(x)=3x2﹣3=0,x=﹣1,1.
x<﹣1时,g(x)单调增,﹣1<x<1时,单减,x>1时,单增,
要使关于x的方程f(x)=a至少有两个不同实根,则g(﹣1)=﹣1+3+5﹣a≥0且g(1)=1﹣3+5﹣a≤0.
解得3≤a≤7
所以答案是:[3,7]
【考点精析】关于本题考查的函数的极值与导数,需要了解求函数的极值的方法是:(1)如果在附近的左侧,右侧,那么是极大值(2)如果在附近的左侧,右侧,那么是极小值才能得出正确答案.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】解关于x的不等式ax2﹣(a+1)x+1<0.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】选修4-5:不等式选讲

设函数f(x)=x2x-15,且|xa|<1,

(1)解不等式

(2)求证:|f(x)-f(a)|<2(|a|+1).

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,四棱锥P﹣ABCD的底面是矩形,侧面PAD丄底面ABCD,∠APD= . (I )求证:平面PAB丄平面PCD;
(II)如果AB=BC,PB=PC,求二面角B﹣PC﹣D的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)=ax2+1(a>0),g(x)=x3+bx
(1)若曲线y=f(x)与曲线y=g(x)在它们的交点(1,c)处具有公共切线,求a、b的值;
(2)当a2=4b时,求函数f(x)+g(x)的单调区间,并求其在区间(﹣∞,﹣1)上的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知P为椭圆 =1上的一个点,M,N分别为圆(x+3)2+y2=1和圆(x﹣3)2+y2=4上的点,则|PM|+|PN|的最小值为

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆的离心率为,点 分别为椭圆的右顶点、上顶点和右焦点,且

(1)求椭圆的方程;

(2)已知直线 被圆 所截得的弦长为,若直线与椭圆交于 两点,求面积的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】有4个不同的小球,4个不同的盒子,现要把球全部放进盒子内.
(1)恰有1个盒子不放球,共有多少种方法?
(2)恰有2个盒子不放球,共有多少种方法?

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】若函数f(x)=x2+ax﹣ 在( ,+∞)是增函数,则a的取值范围(
A.(﹣∞,3]
B.(﹣∞,﹣3]
C.[﹣3,+∞)
D.(﹣3,+∞)

查看答案和解析>>

同步练习册答案