【题目】如图,在四棱锥中,平面ABCD,底部ABCD为菱形,E为CD的中点.
(Ⅰ)求证:BD⊥平面PAC;
(Ⅱ)若∠ABC=60°,求证:平面PAB⊥平面PAE;
(Ⅲ)棱PB上是否存在点F,使得CF∥平面PAE?说明理由.
【答案】(Ⅰ)见解析;
(Ⅱ)见解析;
(Ⅲ)见解析.
【解析】
(Ⅰ)由题意利用线面垂直的判定定理即可证得题中的结论;
(Ⅱ)由几何体的空间结构特征首先证得线面垂直,然后利用面面垂直的判断定理可得面面垂直;
(Ⅲ)由题意,利用平行四边形的性质和线面平行的判定定理即可找到满足题意的点.
(Ⅰ)证明:因为平面,所以;
因为底面是菱形,所以;
因为,平面,
所以平面.
(Ⅱ)证明:因为底面是菱形且,所以为正三角形,所以,
因为,所以;
因为平面,平面,
所以;
因为
所以平面,
平面,所以平面平面.
(Ⅲ)存在点为中点时,满足平面;理由如下:
分别取的中点,连接,
在三角形中,且;
在菱形中,为中点,所以且,所以且,即四边形为平行四边形,所以;
又平面,平面,所以平面.
科目:高中数学 来源: 题型:
【题目】依据黄河济南段8月份的水文观测点的历史统计数据所绘制的频率分布直方图如图(甲)所示:依据济南的地质构造,得到水位与灾害等级的频率分布条形图如图(乙)所示.
(I)以此频率作为概率,试估计黄河济南段在8月份发生I级灾害的概率;
(Ⅱ)黄河济南段某企业,在3月份,若没受1、2级灾害影响,利润为500万元;若受1级灾害影响,则亏损100万元;若受2级灾害影响则亏损1000万元.
现此企业有如下三种应对方案:
试问,如仅从利润考虑,该企业应选择这三种方案中的哪种方案?说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】为了解某班学生喜欢数学是否与性别有关,对本班人进行了问卷调查得到了如下的列联表,已知在全部人中随机抽取人抽到喜欢数学的学生的概率为.
喜欢数学 | 不喜欢数学 | 合计 | |
男生 | |||
女生 | |||
合计 |
(1)请将上面的列联表补充完整(不用写计算过程);
(2)能否在犯错误的概率不超过的前提下认为喜欢数学与性别有关?说明你的理由;
(3)现从女生中抽取人进一步调查,设其中喜欢数学的女生人数为,求的分布列与期望.
下面的临界表供参考:
(参考公式:,其中)
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】设、、、 为平面直角坐标系中两两不同的点。若,,且,则称点、调和分割点、。已知平面上点、调和分割点 、.则下面说法正确的是()。
A. 可能是线段的中点
B. 可能是线段 的中点
C. 点、 可能同时在线段上
D. 点 、不可能同时在线段的延长线上
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】若一条直线与一个平面垂直,则称此直线与平面构成一个“正交线面对”.那么在一个正方体中,由两个顶点确定的直线与含有四个顶点的平面构成的“正交线面对”的个数是( )
A. 48 B. 36 C. 24 D. 18
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】古代以六十年为一个甲子用十天干和十二地支相配六十年轮一遍,周而复始。甲子为干支之一,顺序为第一个前一位是癸亥,后一位是乙丑论阴阳五行,天干之甲属阳之木,地支之子属阳之水,是水生木相生,十干与十二支按顺序两两相配,从甲子到癸亥,共六十个组合,称六十甲子.
问题
(1)2020年是己亥年,至少多少年后又是己亥年?
(2)从一个已亥年到下一个己亥年,周期是多少?
(3)计算i,,,,…,一直计算下去,你会得到什么结论?
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com