精英家教网 > 高中数学 > 题目详情

【题目】随着移动互联网的快速发展,基于互联网的共享单车应运而生.某市场研究人员为了了解共享单车运营公司的经营状况,对该公司最近六个月内的市场占有率进行了统计,并绘制了相应的折线图.

(Ⅰ)由折线图得,可用线性回归模型拟合月度市场占有率与月份代码之间的关系.求关于的线性回归方程,并预测公司2017年5月份(即时)的市场占有率;

(Ⅱ)为进一步扩大市场,公司拟再采购一批单车.现有采购成本分别为1000元/辆和1200元/辆的两款车型可供选择,按规定每辆单车最多使用4年,但由于多种原因(如骑行频率等)会导致车辆报废年限各不形同,考虑到公司运营的经济效益,该公司决定先对两款车型的单车各100辆进行科学模拟测试,得到两款单车使用寿命频数表见上表.

经测算,平均每辆单车每年可以带来收入500元,不考虑除采购成本之外的其他成本,假设每辆单车的使用寿命都是整年,且以频率作为每辆单车使用寿命的概率,如果你是公司的负责人,以每辆单车产生利润的期望值为决策依据,你会选择采购哪款车型?

(参考公式:回归直线方程为,其中

【答案】(1) 线性回归方程为公司2017年5月份的市场占有率预计为23% (2) 应该采购款单车

【解析】试题分析:(1)根据折线图及平均数公式可求出的值从而可得样本中心点的坐标,从而求可得公式中所需数据,求出再结合样本中心点的性质可得,进而可得关于的回归方程代入回归方程即可得结果;(2)根据表格中的数据算出每辆款车可使用年的概率,从而可得每辆款车可产生的利润期望值,同理可得每辆款车可产生的利润期望值比较两期望值的大小即可得出结论.

试题解析:(Ⅰ)计算可得,

.

.月度市场占有率与月份序号之间的线性回归方程为.

时,.故公司2017年5月份的市场占有率预计为23%.

(Ⅱ)由频率估计概率,每辆款车可使用1年、2年、3年和4年的概率分别为0.2、0.35、0.35和0.1,每辆款车可产生的利润期望值为

(元).

频率估计概率,每辆款车可使用1年、2年、3年和4年的概率分别为0.1、0.3、0.4和0.2,

每辆款车可产生的利润期望值为:

(元),应该采购款单车.

【方法点晴】本题主要考查折线图的应用与线性回归方程,以及离散型随机变量的分布列与期望,属于难题.求回归直线方程的步骤:①依据样本数据画出散点图,确定两个变量具有线性相关关系;②计算的值;③计算回归系数;④写出回归直线方程为; 回归直线过样本点中心是一条重要性质,利用线性回归方程可以估计总体,帮助我们分析两个变量的变化趋势.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】01234这五个数字组成无重复数字的自然数.

(Ⅰ)在组成的三位数中,求所有偶数的个数;

(Ⅱ)在组成的三位数中,如果十位上的数字比百位上的数字和个位上的数字都小,则称这个数为“凹数”,如301423等都是“凹数”,试求“凹数”的个数;

(Ⅲ)在组成的五位数中,求恰有一个偶数数字夹在两个奇数数字之间的自然数的个数.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某兴趣小组测量电视塔AE的高度H(单位m),如示意图,垂直放置的标杆BC高度h=4m,仰角∠ABE=α∠ADE=β

1)该小组已经测得一组αβ的值,tanα=1.24,tanβ=1.20,,请据此算出H的值

2)该小组分析若干测得的数据后,发现适当调整标杆到电视塔的距离d(单位m),使αβ之差较大,可以提高测量精确度,若电视塔实际高度为125m,问d为多少时,α-β最大

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数

(1)求不等式的解集;

(2)若对一切,均有成立,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数,且函数的图象在点处的切线斜率为

(1)求的值,并求函数的最值;

(2)当时,求证:.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在平面直角坐标系中,直线过点,倾斜角为,以坐标原点为极点,轴的正半轴为极轴建立极坐标系,曲线的极坐标方程是

(1)写出直线的参数方程和曲线的直角坐标方程;

(2)若,设直线与曲线交于两点,求

(3)在(2)条件下,求的面积.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,已知椭圆的离心率是,一个顶点是

)求椭圆的方程;

)设是椭圆上异于点的任意两点,且.试问:直线是否恒过一定点?若是,求出该定点的坐标;若不是,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数,(其中)的图象与x轴的交点中,相邻两个交点之间的距离为,且图象上一个最低点为

(Ⅰ)求的解析式;

(Ⅱ)当,求的值域.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在党中央的正确指导下,通过全国人民的齐心协力,特别是全体一线医护人员的奋力救治,二月份新冠肺炎疫情得到了控制.下图是国家卫健委给出的全国疫情通报,甲、乙两个省份从27日到213日一周的新增新冠肺炎确诊人数的折线图如下:

根据图中甲、乙两省的数字特征进行比对,通过比较把你得到最重要的两个结论写在答案纸指定的空白处.

_________________________________________________.

_________________________________________________.

查看答案和解析>>

同步练习册答案