精英家教网 > 高中数学 > 题目详情

【题目】已知圆M的圆心M在x轴上,半径为1,直线 ,被圆M所截的弦长为 ,且圆心M在直线l的下方. (Ⅰ)求圆M的方程;
(Ⅱ)设A(0,t),B(0,t+6)(﹣5≤t≤﹣2),若圆M是△ABC的内切圆,求△ABC的面积S的最大值和最小值.

【答案】解:(Ⅰ)设圆心M(a,0),由已知,得M到l:8x﹣6y﹣3=0的距离为 ,∴ , 又∵M在l的下方,∴8a﹣3>0,∴8a﹣3=5,a=1,故圆的方程为(x﹣1)2+y2=1.
(Ⅱ)设AC斜率为k1 , BC斜率为k2 , 则直线AC的方程为y=k1x+t,直线BC的方程为y=k2x+t+6.由方程组 ,得C点的横坐标为 ,∵|AB|=t+6﹣t=6,∴
由于圆M与AC相切,所以 ,∴ ;同理,


∵﹣5≤t≤﹣2,∴﹣2≤t+3≤1,
∴﹣8≤t2+6t+1≤﹣4,∴
【解析】(I)设圆心M(a,0),利用M到l:8x﹣6y﹣3=0的距离,求出M坐标,然后求圆M的方程;(II)设A(0,t),B(0,t+6)(﹣5≤t≤﹣2),设AC斜率为k1 , BC斜率为k2 , 推出直线AC、直线BC的方程,求出△ABC的面积S的表达式,求出面积的最大值和最小值.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】若函数f(x)满足对于任意实数a,b,c,都有f(a),f(b),f(c)为某三角形的三边长,则成f(x)为“可构造三角形函数”,已知f(x)= 是“可构造三角形函数”,则实数t的取值范围是(
A.[﹣1,0]
B.(﹣∞,0]
C.[﹣2,﹣1]
D.[﹣2,﹣ ]

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知抛物线y2=2px(p>0),F为其焦点,l为其准线,过F作一条直线交抛物线于A,B两点,A′,B′分别为A,B在l上的射线,M为A′B′的中点,给出下列命题: ①A′F⊥B′F;
②AM⊥BM;
③A′F∥BM;
④A′F与AM的交点在y轴上;
⑤AB′与A′B交于原点.
其中真命题的是 . (写出所有真命题的序号)

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】过点(1,2)总可以作两条直线与圆 x2+y2+kx+2y+k2﹣15=0 相切,则实数k的取值范围是

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】若函数 ,则满足方程f(a+1)=f(a)的实数a的值为

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】函数y=ax﹣b(a>0且a≠1)的图象如图1所示,则函数y=cosax+b的图象可能是(
A.
B.
C.
D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知正方体ABCD﹣A1B1C1D1 , O是底ABCD对角线的交点.求证:

(1)C1O∥面AB1D1
(2)面OC1D∥面AB1D1

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】若椭圆 与双曲线 有相同的焦点F1、F2 , P是两曲线的一个交点,则△F1PF2的面积是(
A.4
B.2
C.1
D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设奇函数f(x)在区间[﹣7,﹣3]上是减函数且最大值为﹣5,函数g(x)= ,其中a<
(1)判断并用定义法证明函数g(x)在(﹣2,+∞)上的单调性;
(2)求函数F(x)=f(x)+g(x)在区间[3,7]上的最小值.

查看答案和解析>>

同步练习册答案