精英家教网 > 高中数学 > 题目详情
4.某个部件由3个型号相同的电子元件并联而成,3个电子元件中有一个正常工作,则改部件正常工作,已知这种电子元件的使用年限ξ(单位:年)服从正态分布,且使用年限少于3年的概率和多于9年的概率都是0.2.那么该部件能正常工作的时间超过9年的概率为0.488.

分析 利用使用年限少于3年的概率和多于9年的概率都是0.2,可得正态分布的对称轴为ξ=6,9年内每个电子元件能正常工作的概率为0.2.求出9年内部件不能正常工作的概率,即可求出该部件能正常工作的时间超过9年的概率.

解答 解:∵使用年限少于3年的概率和多于9年的概率都是0.2,
∴P(0<ξ<3)=P(ξ>9)=0.2,
∴正态分布的对称轴为ξ=6,
∴9年内每个电子元件能正常工作的概率为0.2.
∴9年内部件不能正常工作的概率为0.83=0.512,
∴该部件能正常工作的时间超过9年的概率为1-0.512=0.488.
故答案为:0.488.

点评 本题考查概率的计算,考查正态分布、对立事件的概率,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

14.数列{an}中,a1=1,?n≥2,n∈N*,a1•a2•a3•…an=n2+2n,则a3=$\frac{15}{8}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

15.设方程2lnx=10-3x的解为x0,则关于x的不等式2x-3<x0的最大整数解为2.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.若函数f(x)=sinωx+$\sqrt{3}$cosωx(x∈R,ω>0),又f(α)=-2,f(β)=0,且|α-β|的最小值为$\frac{3π}{4}$,则函数g(x)=f(x)-1在[-2π,0]上零点的个数为(  )
A.0B.1C.2D.3

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

19.下列说法正确的有①⑤.
①函数y=x2-2|x|+1的递减的区间是(-∞,-1]和[0,1];
②函数y=$\frac{3-5x}{4x+1}$的值域是(-∞,$\frac{3}{4}$)∪($\frac{3}{4}$,+∞);
③函数f(x)=$\frac{1}{{x}^{2}-3x+2}$+$\sqrt{x-1}$的定义域是{x|x≥1,且x≠2};
④若函数f(x)=$\frac{(x+1)(x+a)}{x}$为奇函数,则a=1;
⑤已知二次函数f(x)满足f(2+x)=f(2-x)(x∈R),且f(x)在(2,+∞)上是减函数,则f(-$\sqrt{2}$)<f(5)<f($\sqrt{3}$)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.若x,y满足约束条件$\left\{\begin{array}{l}{y≤x}\\{x+y≤4}\\{y≥k}\end{array}\right.$,且z=2x+y的最小值为-9,则k的值为(  )
A.2B.-2C.3D.-3

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

16.若向量$\overrightarrow{a}$,$\overrightarrow{b}$,$\overrightarrow{c}$均为单位向量,且$\overrightarrow{a}•\overrightarrow{b}$=$\frac{1}{2}$,$(\overrightarrow{a}-\overrightarrow{c})•(\overrightarrow{b}-\overrightarrow{c})$>0,则|$\overrightarrow{a}+\overrightarrow{b}-\overrightarrow{c}$|的最大值为1$+\sqrt{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.设a2<b2,a-b>0,则(  )
A.b<0B.b>0C.a<0D.a>0

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

14.若x>1,则1+4x+$\frac{1}{x-1}$的最小值是9,此时x=$\frac{3}{2}$.

查看答案和解析>>

同步练习册答案