精英家教网 > 高中数学 > 题目详情
8.计算:(-3$\frac{3}{8}$)${\;}^{-\frac{2}{3}}$+(0.002)${\;}^{-\frac{1}{2}}$-10($\sqrt{5}$-2)-1+($\sqrt{2}$-$\sqrt{3}$)0

分析 化带分数为假分数,化负指数为正指数,化0指数幂为1求得答案.

解答 解:(-3$\frac{3}{8}$)${\;}^{-\frac{2}{3}}$+(0.002)${\;}^{-\frac{1}{2}}$-10($\sqrt{5}$-2)-1+($\sqrt{2}$-$\sqrt{3}$)0
=$(-\frac{27}{8})^{-\frac{2}{3}}+(\frac{2}{1000})^{-\frac{1}{2}}-\frac{10}{\sqrt{5}-2}+1$
=$[(-\frac{3}{2})^{3}]^{-\frac{2}{3}}$$+\sqrt{500}$$-10(\sqrt{5}+2)+1$
=$(-\frac{3}{2})^{-2}+10\sqrt{5}-10\sqrt{5}-20+1$
=$\frac{4}{9}-20+1$
=$-\frac{167}{9}$.

点评 本题考查根式与分数指数幂的互化及其化简运算,是基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

18.已知正数x,y满足$\frac{1}{x}$+$\frac{1}{y}$=1,则$\frac{4x}{x-1}$+$\frac{9y}{y-1}$的最小值为(  )
A.26B.25C.24D.23

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.设函数y=f(x)在(a,b)上的导函数f′(x),f′(x)在(a,b)上的导函数为f″(x).若在(a,b)上,f″(x)>0恒成立,则称函数y=f(x)在(a,b)上为“凹函数”.若f(x)=-$\frac{1}{6}$x3+x2-aex+2是R上的“凹函数”,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.已知A={x|2x2=sx-r},B={x|6x2+(s+2)x+r=0},且A∩B={$\frac{1}{2}$},求A∪B.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.已知M={x|x>1},N={x|x>a}.
(1)若M⊆N,则a的取值范围是a≤1;
(2)若N?M,则a的取值范围是a>1.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.已知集合A={(x,y)|2x-y+m>0},B={(x,y)|x+y-n≤0},若点P(2,3)∈A,且P(2,3)∉B,求m、n的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.如图,平面内有三个向量$\overrightarrow{OA}$,$\overrightarrow{OB}$,$\overrightarrow{OC}$,其中$\overrightarrow{OA}$与$\overrightarrow{OB}$的夹角为120°,$\overrightarrow{OA}$与$\overrightarrow{OC}$的夹角为θ(0°<θ<60°)且|$\overrightarrow{OA}$|=|$\overrightarrow{OB}$|=1,|$\overrightarrow{OC}$|=2$\sqrt{3}$,($\overrightarrow{OA}$+$\overrightarrow{OB}$)•$\overrightarrow{OC}$=3
(1)求θ的度数
(2)设$\overrightarrow{a}$=k•$\overrightarrow{OA}$-$\overrightarrow{OC}$
①若$\overrightarrow{a}$⊥$\overrightarrow{AB}$,试求实数k的值
②若$\overrightarrow{a}$∥$\overrightarrow{AB}$,试求实数k的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.如图,△ABC的三个顶点坐标分别为A(-6,0),B(2,0),C(0,6),D,E分别是高CO的两个三等分点,过D,作直线FG∥AC,分别交AB和BC于G,F,连接EF.
(1)求过E,G,F三点的圆M的方程;
(2)在线段AC上是否存在点H,使得过点H存在和圆M相切的直线,并且若过点H存在两条切线时,则点H和两切点P,Q组成的∠PHQ≥90°?若存在,求出H点对应轨迹的长度;若不存在,试说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.已知集合M={x,xy,lg(xy)},N={0,|x|,y},并且M=N,求(x+$\frac{1}{y}$)+(x2+$\frac{1}{{y}^{2}}$)+(x3+$\frac{1}{{y}^{3}}$)+…+(x2006+$\frac{1}{{y}^{2006}}$)

查看答案和解析>>

同步练习册答案