精英家教网 > 高中数学 > 题目详情

【题目】下列函数既是奇函数,又在上单调递增的是  

A. B.

C. D.

【答案】C

【解析】

根据题意,依次分析选项中函数的奇偶性以及上的单调性,综合即可得答案.

根据题意,依次分析选项:

对于Afx)=|sinx|,为偶函数,不符合题意;

对于Bfx)=ln,其定义域为(﹣ee),有f(﹣x)=lnlnfx),为奇函数,

t1,在(﹣ee)上为减函数,而ylnt为增函数,

fx)=ln在(﹣ee)上为减函数,不符合题意;

对于Cfxexex),有f(﹣xexexexex)=﹣fx),为奇函数,且f′(xex+ex)>0,在R上为增函数,符合题意;

对于Dfx)=lnx),其定义域为R,

f(﹣x)=lnx)=﹣lnx)=﹣fx),为奇函数,

txylntt在R上为减函数,而ylnt为增函数,

fx)=lnx)在R上为减函数,不符合题意;

故选:C

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知椭圆的方程为,离心率,且短轴长为4.

求椭圆的方程;

已知,若直线l与圆相切,且交椭圆ECD两点,记的面积为,记的面积为,求的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】为了美化环境,某公园欲将一块空地规划建成休闲草坪,休闲草坪的形状为如图所示的四边形ABCD.其中AB=3百米,AD=百米,且△BCD是以D为直角顶点的等腰直角三角形.拟修建两条小路AC,BD(路的宽度忽略不计),设∠BAD=()

(1)当cos时,求小路AC的长度;

(2)当草坪ABCD的面积最大时,求此时小路BD的长度.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】男运动员6名,女运动员4名,其中男女队长各1.选派5人外出比赛,在下列情形中各有多少种选派方法?

1)男运动员3名,女运动员2名;

2)至少有1名女运动员;

3)队长中至少有1人参加;

4)既要有队长,又要有女运动员.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某城市的华为手机专卖店对该市市民使用华为手机的情况进行调查.在使用华为手机的用户中,随机抽取100名,按年龄(单位:岁)进行统计的频率分布直方图如图:

(1)根据频率分布直方图,分别求出样本的平均数(同一组数据用该区间的中点值作代表)和中位数的估计值(均精确到个位);

(2)在抽取的这100名市民中,按年龄进行分层抽样,抽取20人参加华为手机宣传活动,现从这20人中,随机选取2人各赠送一部华为手机,求这2名市民年龄都在内的人数为,求的分布列及数学期望.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】物线的焦点为,已知点为抛物线上的两个动点,且满足,过弦的中点作该抛物线准线的垂线,垂足为,则的最小值为  

A. B. 1 C. D. 2

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数

时,取得极值,求的值并判断是极大值点还是极小值点;

当函数有两个极值点,且时,总有成立,求的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知焦点在x轴的椭圆C离心率e=A是左顶点,E20

1)求椭圆C的标准方程:

2)若斜率不为0的直线l过点E,且与椭圆C相交于点PQ两点,求三角形APQ面积的最大值

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数.

(Ⅰ)当a=1时,写出的单调递增区间(不需写出推证过程);

(Ⅱ)当x>0时,若直线y=4与函数的图像交于A,B两点,记,求的最大值;

(Ⅲ)若关于x的方程在区间(1,2)上有两个不同的实数根,求实数a的取值范围.

查看答案和解析>>

同步练习册答案