【题目】下列函数既是奇函数,又在上单调递增的是
A. B.
C. D.
【答案】C
【解析】
根据题意,依次分析选项中函数的奇偶性以及上的单调性,综合即可得答案.
根据题意,依次分析选项:
对于A,f(x)=|sinx|,为偶函数,不符合题意;
对于B,f(x)=ln,其定义域为(﹣e,e),有f(﹣x)=lnlnf(x),为奇函数,
设t1,在(﹣e,e)上为减函数,而y=lnt为增函数,
则f(x)=ln在(﹣e,e)上为减函数,不符合题意;
对于C,f(x)(ex﹣e﹣x),有f(﹣x)(e﹣x﹣ex)(ex﹣e﹣x)=﹣f(x),为奇函数,且f′(x)(ex+e﹣x)>0,在R上为增函数,符合题意;
对于D,f(x)=ln(x),其定义域为R,
f(﹣x)=ln(x)=﹣ln(x)=﹣f(x),为奇函数,
设tx,y=lnt,t在R上为减函数,而y=lnt为增函数,
则f(x)=ln(x)在R上为减函数,不符合题意;
故选:C.
科目:高中数学 来源: 题型:
【题目】已知椭圆的方程为,离心率,且短轴长为4.
求椭圆的方程;
已知,,若直线l与圆相切,且交椭圆E于C、D两点,记的面积为,记的面积为,求的最大值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】为了美化环境,某公园欲将一块空地规划建成休闲草坪,休闲草坪的形状为如图所示的四边形ABCD.其中AB=3百米,AD=百米,且△BCD是以D为直角顶点的等腰直角三角形.拟修建两条小路AC,BD(路的宽度忽略不计),设∠BAD=,(,).
(1)当cos=时,求小路AC的长度;
(2)当草坪ABCD的面积最大时,求此时小路BD的长度.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】男运动员6名,女运动员4名,其中男女队长各1名.选派5人外出比赛,在下列情形中各有多少种选派方法?
(1)男运动员3名,女运动员2名;
(2)至少有1名女运动员;
(3)队长中至少有1人参加;
(4)既要有队长,又要有女运动员.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某城市的华为手机专卖店对该市市民使用华为手机的情况进行调查.在使用华为手机的用户中,随机抽取100名,按年龄(单位:岁)进行统计的频率分布直方图如图:
(1)根据频率分布直方图,分别求出样本的平均数(同一组数据用该区间的中点值作代表)和中位数的估计值(均精确到个位);
(2)在抽取的这100名市民中,按年龄进行分层抽样,抽取20人参加华为手机宣传活动,现从这20人中,随机选取2人各赠送一部华为手机,求这2名市民年龄都在内的人数为,求的分布列及数学期望.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知焦点在x轴的椭圆C:离心率e=,A是左顶点,E(2,0)
(1)求椭圆C的标准方程:
(2)若斜率不为0的直线l过点E,且与椭圆C相交于点P,Q两点,求三角形APQ面积的最大值
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数.
(Ⅰ)当a=1时,写出的单调递增区间(不需写出推证过程);
(Ⅱ)当x>0时,若直线y=4与函数的图像交于A,B两点,记,求的最大值;
(Ⅲ)若关于x的方程在区间(1,2)上有两个不同的实数根,求实数a的取值范围.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com