精英家教网 > 高中数学 > 题目详情

将函数数学公式在区间(0,+∞)内的全部极值点按从小到大的顺序排成数列{an}(n∈N*).
(1)求数列{an}的通项公式;
(2)设数学公式,数列{bn}的前n项和为Tn,求Tn的表达式.

解:(1)由于=sinx+2013,令f′(x)=0得,x=kπ+(k∈Z).
故函数f(x)极值点为x=kπ+(k∈Z).
又∵函数在区间(0,+∞)内的全部极值点构成数列{an},
故数列{an}是以为首项,π为公差的等差数列,∴an=+(n-1)•π=π(n∈N*).….(6分)
(2)∵bn=2nan=(2n-1)•2n
∴Tn=[1•2+3•22+…+(2n-3)•2n-1+(2n-1)•2n],
2Tn=[1•22+3•23+…+(2n-3)•2n+(2n-1)•2n+1],
两式相减,得-Tn=[1•2+2•22+2•23+…+2•2n-(2n-1)•2n+1],
∴Tn=π[(2n-3)•2n+3].…(12分)
分析:(1)由倍角公式可得f(x)=,求导后令导函数值等0,可得函数的极值点,进而根据三角函数的周期性,可得到数列{an}的首项和公差,进而得到数列{an}的
通项公式.
(2)由,数列{bn}的前n项和为Tn,利用错位相减法可得Tn的表达式.
点评:本题考查的知识点是二倍角的正弦公式,求函数的导数,函数在某点取得极值的条件,数列的函数特性,用错位相减法进行求和,属于中档题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

将函数数学公式在区间(0,+∞)内的全部极值点按从小到大的顺序排成数列{an},(n=1,2,3,…).
(Ⅰ)求数列{an}的通项公式;
(Ⅱ)设bn=sinansinan+1sinan+2,求证:数学公式,(n=1,2,3,…).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

将函数数学公式在区间(0,+∞)内的全部极值点按从小到大的顺序排成数列{an}(n∈N*).
(1)求数列{an}的通项公式;
(2)设bn=2nan,数列{bn}的前n项和为Tn,求Tn的表达式.

查看答案和解析>>

科目:高中数学 来源:2011年山东省高考数学仿真押题试卷03(文科)(解析版) 题型:解答题

将函数在区间(0,+∞)内的全部极值点按从小到大的顺序排成数列{an}(n∈N*).
(1)求数列{an}的通项公式;
(2)设bn=2nan,数列{bn}的前n项和为Tn,求Tn的表达式.

查看答案和解析>>

科目:高中数学 来源:2010年广东省广州市高考数学考前查漏补缺试卷(文科)(解析版) 题型:解答题

将函数在区间(0,+∞)内的全部极值点按从小到大的顺序排成数列{an}.
(1)求数列{an}的通项公式;
(2)设bn=sinan•sinan+1•sinan+2,求数列{an•bn}的前n项和Sn

查看答案和解析>>

同步练习册答案