精英家教网 > 高中数学 > 题目详情
12.设在(0,π)内有两个不相等角α,β,满足方程acosx+bsinx+c=0.试证:
(1)$\frac{a}{cos\frac{α+β}{2}}$=$\frac{b}{sin\frac{α+β}{2}}$=$\frac{c}{cos\frac{α-β}{2}}$;
(2)cos2$\frac{α-β}{2}$=$\frac{{c}^{2}}{{a}^{2}+{b}^{2}}$.

分析 (1)根据题意,acosα+bsinα+c=0①,acosβ+bsinβ+c=0②;
①-②消去c,利用和差化积证出$\frac{a}{cos\frac{α+β}{2}}$=$\frac{b}{sin\frac{α+β}{2}}$;
①×cosβ-②cosα消去a,利用两角差的正弦公式与和差化积证出$\frac{b}{sin\frac{α+β}{2}}$=$\frac{c}{cos\frac{α-β}{2}}$即可;
(2)由(1)平方,再利用合比公式即可求出cos2$\frac{α-β}{2}$的值.

解答 证明:(1)方程acosx+bsinx+c=0在(0,π)内有两个相异的实根α、β,
∴acosα+bsinα+c=0,①
acosβ+bsinβ+c=0,②
∴方程①-②消去c得,
a(cosα-cosβ)+b(sinα-sinβ)=0,
即a(-2sin$\frac{α+β}{2}$sin$\frac{α-β}{2}$)+b(2cos$\frac{α+β}{2}$sin$\frac{α-β}{2}$)=0,
∴2sin$\frac{α-β}{2}$(bcos$\frac{α+β}{2}$-asin$\frac{α+β}{2}$)=0,
∵α≠β,∴sin$\frac{α-β}{2}$≠0,
∴bcos$\frac{α+β}{2}$-asin$\frac{α+β}{2}$=0,
∴$\frac{a}{cos\frac{α+β}{2}}$=$\frac{b}{sin\frac{α+β}{2}}$;
①×cosβ-②cosα消去a得:
bsinαcosβ-bsinβcosα+c(cosβ-cosα)=0,
∴bsin(α-β)=2csin$\frac{α+β}{2}$sin$\frac{α-β}{2}$,
即2bsin$\frac{α-β}{2}$cos$\frac{α-β}{2}$=2c•sin$\frac{α+β}{2}$sin$\frac{α-β}{2}$,
∴$\frac{b}{sin\frac{α+β}{2}}$=$\frac{c}{cos\frac{α-β}{2}}$;
即$\frac{a}{cos\frac{α+β}{2}}$=$\frac{b}{sin\frac{α+β}{2}}$=$\frac{c}{cos\frac{α-β}{2}}$;
(2)由(1)知,
$\frac{{c}^{2}}{{cos}^{2}\frac{α-β}{2}}$=$\frac{{a}^{2}}{{cos}^{2}\frac{α+β}{2}}$=$\frac{{b}^{2}}{{sin}^{2}\frac{α+β}{2}}$
=$\frac{{a}^{2}{+b}^{2}}{{cos}^{2}\frac{α+β}{2}{+sin}^{2}\frac{α+β}{2}}$
=a2+b2
∴cos2$\frac{α-β}{2}$=$\frac{{c}^{2}}{{a}^{2}{+b}^{2}}$.

点评 本题考查了三角恒等变换的应用问题,也考查了三角恒等式的证明问题,是较难的题目.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

2.化简:$\frac{A_n^m}{{A_{n-1}^{m-1}}}$=n.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

3.函数y=x2-2x-m在[0,1]上的最大值与最小值的和为-3,则函数y=-x2+mx在[0,1]上的最小值是0.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.如图所示的“相邻塔”形立体建筑,已知P-OAC和Q-OBD是边长分别为a和$\frac{m}{a}({m是常数})$的两个正四面体,底面中AB与CD交于点O,试求出塔尖P,Q之间的距离关于边长a的函数,并求出a为多少时,塔尖P,Q之间的距离最短.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.数列{$\frac{1}{{2}^{n}}$+1}的前n项和公式Sn=(  )
A.$\frac{1}{{2}^{n}}$B.n+$\frac{1}{{2}^{n}}$C.n-$\frac{1}{{2}^{n}}$+1D.n2-2n-$\frac{1}{{2}^{n}}$+1

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

17.设函数$f(x)=\left\{\begin{array}{l}1-|{x-1}|,x<2\\ \frac{1}{2}f(x-2),x≥2\end{array}\right.$,则方程xf(x)-1=0根的个数为6.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.某班级共49人,在必修1的学分考试中,有7人没通过,若用A表示参加补考这一事件,则下列关于事件A的说法正确的是(  )
A.概率为$\frac{1}{7}$B.频率为$\frac{1}{7}$C.频率为7D.概率接近$\frac{1}{7}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.在△ABC中,内角A,B,C所对的边分别是a,b,c,已知acosB=bcosA,边BC上的中线长为4,则△ABC面积的最大值是(  )
A.9B.$\frac{28}{3}$C.$\frac{32}{3}$D.12

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.已知函数$f(x)=\frac{{2-m•{2^x}}}{2^x}$,函数$g(x)={log_a}({x^2}+x+2)$(a>0且a≠1)在$[{-\frac{1}{3}\;,\;1}]$上的最大值为2,若对任意的x1∈[-1,2],存在x2∈[0,3],使得f(x1)≥g(x2),则实数m的取值范围是(  )
A.$({-∞\;,\;-\frac{2}{3}}]$B.$[{\frac{2}{3}\;,\;+∞})$C.$({-∞\;,\;-\frac{1}{2}}]$D.$({-∞\;,\;\frac{1}{2}}]$

查看答案和解析>>

同步练习册答案