精英家教网 > 高中数学 > 题目详情
已知数列{an}为等差数列,Sn是数列{an}的前n项和,a1+a6+a11=4π,则sin(S11)的值为(  )
A、
3
2
B、±
3
2
C、
1
2
D、-
3
2
考点:等差数列的前n项和
专题:等差数列与等比数列
分析:由等差数列的性质和已知可得a6=
3
,由求和公式和性质可得S11=11a6=
44π
3
,代入由诱导公式计算可得.
解答: 解:由等差数列的性质可得a1+a6+a11=3a6=4π,解得a6=
3

∴S11=
11(a1+a11)
2
=
11×2a6
2
=11a6=
44π
3

∴sin(S11)=sin
44π
3
=sin(14π+
3
)=sin
3
=
3
2

故选:A
点评:本题考查等差数列的前n项和,涉及三角函数求值,属基础题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

函数y=x-2sinx在[0,π]上的递增区间是
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数:f(x)=asin2x+cos2x且f(
π
3
)=
3
-1
2

(1)求a的值和f(x)的最大值;
(2)求f(x)的单调减区间.

查看答案和解析>>

科目:高中数学 来源: 题型:

关于x的方程2x+m=0在区间[-1,2]内总有解的一个必要不充分条件是(  )
A、[-4,-
1
2
]
B、[-4,0]
C、[-4,-1]
D、[1,4]

查看答案和解析>>

科目:高中数学 来源: 题型:

已知椭圆的短轴为2
3
,左、右焦点分别为F1、F2,点P在椭圆上,且满足△PF1F2的周长为6.
(1)求椭圆的标准方程;
(2)若直线l与椭圆交于A、B两点,△ABO面积为
3
,判断|OA|2+|OB|2是否为定值?若为定值,求出定值;若不为定值,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

函数f(x)=sin4x+cos2x-1(x∈R)的值域为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知点G(5,4),圆C1:(x-1)2+(x-4)2=25,过点G的动直线l与圆C1相交于E、F两点,线段EF的中点为C.
(1)求点C的轨迹C2的方程;
(2)若过点A(1,0)的直线l1与C2相交于P、Q两点,线段PQ的中点为M;又l1与l2:x+2y+2=0的交点为N,求证|AM|•|AN|为定值.

查看答案和解析>>

科目:高中数学 来源: 题型:

若P(x0,y0)是圆C:x2+y2=r2外一点,则直线x0x+y0y=r2与圆的位置关系是(  )
A、相离B、相切
C、相交D、以上均有可能

查看答案和解析>>

科目:高中数学 来源: 题型:

若f(x)=
2x-2(x≥0)
f(x+2)(x<0)
,向量
a
=(m,2),
b
=(2,3)相互垂直,则f(m)等于(  )
A、2
B、4
C、
1
4
D、
1
2

查看答案和解析>>

同步练习册答案