精英家教网 > 高中数学 > 题目详情

【题目】第二届中国国际进口博览会11月初在上海举行了,在这届进口博览会上,某高校派出的4人承担了连续5天的志愿者服务,若每天只安排一人且每人至少参加一天志愿服务,则甲参加2天志愿服务的概率为________(结果用数值表示).

【答案】

【解析】

甲参加2天志愿服务为事件A,假设4人分别为:甲、乙、丙、丁,则由题知4人中只有一人参加2天的志愿服务,4种情况;其中5天中选2天有种情况,其余人全排列,相乘得到总的基本事件数;再求出事件A包含的基本事件数,利用古典概型的概率计算公式求解即可.

甲参加2天志愿服务为事件A

则由题知,4人中只有一人参加2天的志愿服务有4种情况;

其中5天中选2天有种情况, 其余人全排列,

所以总的基本事件数;

A事件包含的基本事件数,

由古典概型的概率公式得,

.

故答案为:

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】对于函数,若在定义域内存在实数,满足,则称类函数”.

1)已知函数,试判断是否为类函数?并说明理由;

2)设是定义域上的类函数,求实数的取值范围;

3)若为其定义域上的类函数,求实数取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,正三棱柱的所有棱长均为2,点分别在棱上移动,且.

1)若,求异面直线所成角的余弦值;

2)若二面角的大小为,且,求的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数(其中为自然对数的底数).

1)若,求函数在区间上的最大值;

2)若,关于的方程有且仅有一个根, 求实数的取值范围;

3)若对任意,不等式均成立, 求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在四棱锥中,底面为正方形,为等边三角形,平面平面.

(1)证明:平面平面

(2)若为线段的中点,求三棱锥的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知定义域为的函数对任意实数满足:,且,并且当时,.给出如下结论:①函数是偶函数;②函数上单调递增;③函数是以2为周期的周期函数;④.其中正确的结论是(

A.①②B.②③C.①④D.③④

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在公差不为零的等差数列{an}中,a4=10,且a3a6a10成等比数列.

1)求{an}的通项公式;

2)设bn=,求数列{bn}的前n项和.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数.(是自然对数的底数,

1)讨论的单调性,并证明有且仅有两个零点;

2)设的一个零点,证明曲线在点处的切线也是曲线的切线.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某班随机抽查了20名学生的数学成绩,分数制成如图的茎叶图,其中A组学生每天学习数学时间不足1个小时,B组学生每天学习数学时间达到一个小时。学校规定90分及90分以上记为优秀,75分及75分以上记为达标,75分以下记为未达标.

1)分别求出AB两组学生的平均分并估计全班的数学平均分

2)现在从成绩优秀的学生中任意抽取2人,求这两人恰好都来自B组的概率;

3)根据成绩得到如下列联表:

①直接写出表中的值;

②判断是否有的把握认为数学成绩达标与否每天学习数学时间能否达到一小时有关.

参考公式与临界值表:K2.

查看答案和解析>>

同步练习册答案