精英家教网 > 高中数学 > 题目详情

【题目】数列{an}满足an+1+an=4n﹣3(n∈N*
(Ⅰ)若{an}是等差数列,求其通项公式;
(Ⅱ)若{an}满足a1=2,Sn为{an}的前n项和,求S2n+1

【答案】解:( I)由题意得an+1+an=4n﹣3…①an+2+an+1=4n+1…②.
②﹣①得an+2﹣an=4,
∵{an}是等差数列,设公差为d,∴d=2,
∵a1+a2=1∴a1+a1+d=1,∴

(Ⅱ)∵a1=2,a1+a2=1,
∴a2=﹣1.
又∵an+2﹣an=4,
∴数列的奇数项与偶数项分别成等差数列,公差均为4,
S2n+1=(a1+a3+…+a2n+1)+(a2+a4+…+a2n
=
=4n2+n+2
【解析】(Ⅰ)由题意得an+1+an=4n﹣3,an+2+an+1=4n+1.所以an+2﹣an=4,由{an}是等差数列,公差d=2,能求出 .(Ⅱ)由a1=2,a1+a2=1,知a2=﹣1.因为an+2﹣an=4,所以数列的奇数项与偶数项分别成等差数列,公差均为4,故a2n1=4n﹣2,a2n=4n﹣5.由此能求出S2n+1
【考点精析】掌握等差数列的通项公式(及其变式)和等差数列的前n项和公式是解答本题的根本,需要知道通项公式:;前n项和公式:

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】某农科所对冬季昼夜温差大小与某反季节大豆新品种发芽多少之间的关系进行分析研究,他们分别记录了12月1日至12月5日的每天昼夜温差与实验室每天每100颗种子中的发芽数,得到如下资料:

日期

12月1日

12月2日

12月3日

12月4日

12月5日

温差x/摄氏度

10

11

13

12

8

发芽数y/颗

23

25

30

26

16

该农科所确定的研究方案是:先从这5组数据中选取2组,用剩下的3组数据求线性回归方程,再用被选取的2组数据进行检验.

(Ⅰ)求选取的2组数据恰好是不相邻2天的数据的概率;

(Ⅱ)若选取的是12月1日与12月5日的2组数据,请根据12月2日至4日的数据,求出关于的线性回归方程,由线性回归方程得到的估计数据与所选取的检验数据的误差均不超过2颗,则认为得到的线性回归方程是可靠的,试问(2)中所得的线性回归方程是否可靠?

附:参考格式:

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设函数f(x)= (a>0且a≠1)是定义域为R的奇函数.
(1)求t的值;
(2)若f(1)>0,求使不等式f(kx﹣x2)+f(x﹣1)<0对一切x∈R恒成立的实数k的取值范围;
(3)若函数f(x)的图象过点(1, ),是否存在正数m,且m≠1使函数g(x)=logm[a2x+a2x﹣mf(x)]在[1,log23]上的最大值为0,若存在,求出m的值,若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)=ex(x2﹣bx)(b∈R)在区间[ ,2]上存在单调递增区间,则实数b的取值范围是(
A.(﹣∞,
B.(﹣∞,
C.(﹣
D.( ,+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)= x3﹣x2+x.
(1)求函数f(x)在[﹣1,2]上的最大值和最小值;
(2)若函数g(x)=f(x)﹣4x,x∈[﹣3,2],求g(x)的单调区间.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数),其中为自然对数的底数.

(1)讨论函数的单调性及极值;

(2)若不等式内恒成立,求证: .

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知全集U=R,函数y= + 的定义域为A,函数y= 的定义域为B.
(1)求集合A、B.
(2)(UA)∪(UB).

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】给出下列函数:
①y=x+
②y=lgx+logx10(x>0,x≠1);
③y=sinx+ (0<x≤ );
④y=
⑤y= (x+ )(x>2).
其中最小值为2的函数序号是

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】用长为90cm,宽为48cm的长方形铁皮做一个无盖的容器,先在四角分别截去一个小正方形,然后把四边翻转90°角,再焊接而成(如图),问该容器的高为多少时,容器的容积最大?最大容积是多少?

查看答案和解析>>

同步练习册答案