精英家教网 > 高中数学 > 题目详情

【题目】设命题p:实数满足不等式

命题q:关于不等式对任意的恒成立.

1)若命题为真命题,求实数的取值范围;

2)若“为假命题,为真命题,求实数的取值范围.

【答案】(1);(2)

【解析】

1)若命题为真命题,则成立,求实数的取值范围即可;

2)先假设两命题都是真命题时实数的取值范围,若“为假命题,为真命题命题一真一假,分别求出当假和真时的取值范围,再求并集即可得到答案。

1)若命题为真命题,则成立,即,即

2)由(1)可知若命题为真命题,则

若命题为真命题,则关于不等式对任意的恒成立

,解得

因为“为假命题,为真命题,所以命题一真一假

假,则,即

真,则,即

综上,实数的取值范围.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知函数在点处的切线与y轴垂直.

1)若,求的单调区间;

2)若成立,求a的取值范围

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数.

1)函数是否有极值?若有,求出极值;若没有,说明理由.

2)若对任意,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)=(x2-ax)ex(x∈R),a为实数.

(1)当a=0时,求函数f(x)的单调增区间;

(2)若f(x)在闭区间[-1,1]上为减函数,求a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设椭圆,左、右焦点分别是,为圆心,3为半径的圆与以为圆心,1为半径的圆相交于椭圆上的点

1)求椭圆的方程;

2)设椭圆,为椭圆上任意一点,过点的直线交椭圆两点,射线交椭圆于点

①求的值;

②令,的面积的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知定圆,其圆心为,点为圆所在平面内一定点,点为圆上一个动点,若线段的中垂线与直线交于点,则动点的轨迹可能为______.(写出所有正确的序号)(1)椭圆;(2)双曲线;(3)抛物线;(4)圆;(5)直线;(6)一个点.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知如图几何体,正方形和矩形所在平面互相垂直,的中点,

(Ⅰ)求证:平面

(Ⅱ)求二面角的大小.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某农科所对冬季昼夜温差大小与某反季节大豆新品种发芽多少之间的关系进行分析研究,12月1日至12月5日的昼夜温差与实验室每天每100颗种子中的发芽数如下表所示:

日期

12月1日

12月2日

12月3日

12月4日

12月5日

温差x(℃)

10

11

13

12

8

发芽数y(颗)

23

25

30

26

16

该农科所确定的研究方案是:先从这5组数据中选取2组,用剩下的3组数据求回归方程,再用被选取的2组数据进行检验.

(1)求选取的2组数据恰好是不相邻的2组数据的概率.

(2)若选取的是12月1日与12月5日的两组数据,请根据12月2日至12月4日的数据,求y关于x的线性回归方程.

(3)若由线性回归方程得到的估计数据与所选出的检验数据的误差不超过2颗,则认为得到的线性回归方程是可靠的,试问(2)中所得的线性回归方程是否可靠?

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设函数是由曲线确定的.

1)写出函数,并判断该函数的奇偶性;

2)求函数的单调区间并证明其单调性.

查看答案和解析>>

同步练习册答案