分析 (1)由P的坐标,利用任意角的三角函数定义求出sinα与cosα的值,代入原式计算即可得到结果;
(2)原式利用同角三角函数间的基本关系化简,将tanβ的值代入计算即可求出值.
解答 解:(1)∵a<0,角α的终边经过点P(-3a,4a),
∴sinα=-$\frac{4a}{\sqrt{(-3a)^{2}+(4a)^{2}}}$=-$\frac{4}{5}$,cosα=$\frac{-3a}{-\sqrt{(-3a)^{2}+(4a)^{2}}}$=$\frac{3}{5}$,
则原式=-$\frac{4}{5}$+$\frac{6}{5}$=$\frac{2}{5}$;
(2)∵tanβ=2,
∴原式=$\frac{si{n}^{2}β+2sinβcosβ}{si{n}^{2}β+co{s}^{2}β}$=$\frac{ta{n}^{2}β+2tanβ}{ta{n}^{2}β+1}$=$\frac{4+4}{4+1}$=$\frac{8}{5}$.
点评 此题考查了同角三角函数基本关系的运用,熟练掌握基本关系是解本题的关键.
科目:高中数学 来源: 题型:选择题
A. | (0,1) | B. | (0,2) | C. | (0,3) | D. | [1,3) |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
A. | [-2,+∞) | B. | [-2,0)∪(0,+∞) | C. | (-2,+∞) | D. | (-∞,2) |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
A. | 在圆O外 | B. | 在圆O上 | C. | 在圆O内 | D. | 无法确定 |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com