精英家教网 > 高中数学 > 题目详情
( (本小题满分12分)

在四棱锥P-ABCD中,底面ABCD是矩形,PA=AD=4,AB=2,
PB=2,PD=4,E是PD的中点
(1)求证:AE⊥平面PCD;
(2)若F是线段BC的中点,求三棱锥F-ACE的体积。
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

((本小题满分12分)
在边长为5的菱形ABCD中,AC=8。现沿对角线BD把△ABD折起,折起后使∠ADC的余弦值为
(I)求证:平面ABD⊥平面CBD;
(II)若M是AB的中点,求折起后AC与平面MCD所成角的一个三角函数值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(本小题满分12分)
如图,在三棱锥中,底面ABC,
AP="AC," 点分别在棱上,且BC//平面ADE
(Ⅰ)求证:DE⊥平面
(Ⅱ)当二面角为直二面角时,求多面体ABCED与PAED的体积比。

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

10分)
如图,四边形ABCD是平行四边形,点P是平面ABCD外一点,M是PC的中点,在DM上取一点G,过G和AP作平面交平面BDM于GH,求证:

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(本题满分12分)
如图,在三棱锥P-ABC中,⊿PAB是等边三角形,D,E分别为AB,PC的中点.
(1)在BC边上是否存在一点F,使得PB∥平面DEF
(2)若∠PAC=∠PBC=90º,证明:AB⊥PC
(3)在(2)的条件下,若AB=2AC=求三棱锥P-ABC的体积

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(、(本题12分)

如图,在四棱锥P-ABCD中,侧面PAD⊥底面ABCD,侧棱PA=PD,底面ABCD为直角梯形,BCADABADAD=2AB=2BC="2, " OAD中点.
(1)求证:PO⊥平面ABCD
(2)求直线PB与平面PAD所成角的正弦值;
(3)线段AD上是否存在点Q,使得三棱锥的体积为?若存在,求出的值;若不存在,请说明理由。

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

在北圈上有甲、乙两地,甲地位于东经,乙地位于西经, 则地球(半径为R)表面上甲、乙两地的最短距离是
A.             B.              C.            D.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(本题12分)
在长方体的中点。
(1)求直线 
(2)作

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

如图,在四棱锥VABCD中,底面ABCD是边长为2的正方形,其它四个侧面都是侧棱长为的等腰三角形,则二面角VABC的度数是     

查看答案和解析>>

同步练习册答案