精英家教网 > 高中数学 > 题目详情

【题目】对数列,规定为数列的一阶差分数列,其中,规定的二阶差分数列,其中.

1)数列的通项公式,试判断是否为等差数列,请说明理由?

2)数列是公比为的正项等比数列,且,对于任意的,都存在,使得,求所有可能的取值构成的集合;

3)各项均为正数的数列的前项和为,且,对满足的任意正整数,都有,且不等式恒成立,求实数的最大值.

【答案】1是等差数列,见解析(2;(32

【解析】

1)根据题干中的定义,结合等差数列的定义即可判断.

2)根据等比数列的通项公式可得,结合题干可得,从而可得,且;分类讨论即可求出.

3)根据题中对数列的定义可得,从而可得,即是等差数列,根据数列为正项等差数列可得,代入等差数列前项和公式,由,可得,当时,不等式都成立;当时,令,代入等差数列的前项和公式,作差,由,即可求解.

解:(1)因为,所以

,又,所以是首项为3,公差为2的等差数列.

因为,则是首项为2,公差为0的等差数列.

2)因为数列是公比为的正项等比数列,所以.

且对任意的,都存在,使得

所以对任意的,都存在,使得

,因为,所以.

,则,解得(舍)或

即当时,对任意的,都有.

,则,解得(舍)或

即当时,对任意的,都有.

,则

故对任意的,不存在,使得.

综上所述,所有可能的取值构成的集合为

3)因为,所以

,所以是等差数列.

的公差为,则.

,则

,则当时,

与数列的各项均为正数矛盾,故.

由等差数列前项和公式可得

所以

所以

则当时,不等式都成立.

另一方面,当时,令

因为

所以当时,,即.不满足任意性.

所以 .

综上,的最大值为2.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】2020年春,新型冠状病毒在我国湖北武汉爆发并讯速蔓延,病毒传染性强并严重危害人民生命安全,国家卫健委果断要求全体人民自我居家隔离,为支援湖北武汉新型冠状病毒疫情防控工作,各地医护人员纷纷逆行,才使得病毒蔓延得到了有效控制.某社区为保障居民的生活不受影响,由社区志愿者为其配送蔬菜、大米等生活用品,记者随机抽查了男、女居民各100名对志愿者所买生活用品满意度的评价,得到下面的2×2列联表.

特别满意

基本满意

80

20

95

5

1)被调查的男性居民中有5个年轻人,其中有2名对志愿者所买生活用品特别满意,现在这5名年轻人中随机抽取3人,求至多有1人特别满意的概率.

2)能否有99%的把握认为男、女居民对志愿者所买生活用品的评价有差异?

附:

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在平面直角坐标系xOy中,曲线C1的参数方程为θ为参数),以原点为极点,x轴非负半轴为极轴,建立极坐标系,曲线C2的极坐标方程为

1)求曲线C1的极坐标方程以及曲线C2的直角坐标方程;

2)若直线lykx与曲线C1、曲线C2在第一象限交于PQ,且|OQ||PQ|,点M的直角坐标为(10),求△PMQ的面积.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在正方体中,棱长为2分别为棱的中点,为底面正方形内一点(含边界)且与面所成角的正切值为,直线与面的交点为,当的距离最小时,则四面体外接球的表面积为___________.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在平面直角坐标系xOy中,直线l的参数方程为 t为参数),若以O为极点,x轴的正半轴为极轴且取相同的单位长度建立极坐标系,曲线C的极坐标方程为.

1)求曲线C的直角坐标方程及直线l的普通方程;

2)将所得曲线C向右平移1个单位长度,再将曲线C上的所有点的横坐标变为原来的2倍,得到曲线,求曲线上的点到直线l的距离的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数.

1)若曲线在点处的切线斜率为1,求实数a的值;

2)当时,求证:

3)若函数在区间上存在极值点,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】《九章算术》中勾股容方问题:今有勾五步,股十二步,问勾中容方几何?魏晋时期数学家刘徽在其《九章算术注》中利用出入相补原理给出了这个问题的一般解法:如图1,用对角线将长和宽分别为的矩形分成两个直角三角形,每个直角三角形再分成一个内接正方形(黄)和两个小直角三角形(朱、青).将三种颜色的图形进行重组,得到如图2所示的矩形.该矩形长为,宽为内接正方形的边长.由刘徽构造的图形还可以得到许多重要的结论,如图3.设为斜边的中点,作直角三角形的内接正方形对角线,过点于点,则下列推理正确的是(

①由图1和图2面积相等得

②由可得

③由可得

④由可得

A.①②③④B.①②④C.②③④D.①③

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数,其中是自然对数的底数,是函数的导数.

1)若上的单调函数,求的值;

2)当时,求证:若,且,则.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】下列结论中正确的个数是(

①在中,“”是“”的必要不充分条件;

②若的最小值为2

③夹在圆柱的两个平行截面间的几何体是圆柱;

④数列的通项公式为,则数列的前项和.(

A.0B.1C.2D.3

查看答案和解析>>

同步练习册答案