精英家教网 > 高中数学 > 题目详情

函数f(x)=数学公式-cosx在[0,+∞)内


  1. A.
    没有零点
  2. B.
    有且仅有一个零点
  3. C.
    有且仅有两个零点
  4. D.
    有无穷多个零点
B
分析:根据余弦函数的最大值为1,可知函数在[π,∞)上为正值,在此区间上函数没有零点,问题转化为讨论函数在区间[0,π)上的零点的求解,利用导数讨论单调性即可.
解答:f′(x)=+sinx
①当x∈[0.π)时,>0且sinx>0,故f′(x)>0
∴函数在[0,π)上为单调增
取x=<0,而>0
可得函数在区间(0,π)有唯一零点
②当x≥π时,>1且cosx≤1
故函数在区间[π,∞)上恒为正值,没有零点
综上所述,函数在区间[0,+∞)上有唯一零点
点评:在[0,+∞)内看函数的单调性不太容易,因此将所给区间分为两段来解决是本题的关键所在.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

(1)已知矩阵A=
a2
1b
有一个属于特征值1的特征向量
α
=
2
-1

①求矩阵A;
②已知矩阵B=
1-1
01
,点O(0,0),M(2,-1),N(0,2),求△OMN在矩阵AB的对应变换作用下所得到的△O'M'N'的面积.
(2)已知在直角坐标系xOy中,直线l的参数方程为
x=t-3
y=
3
 t
(t为参数),在极坐标系(与直角坐标系xOy取相同的长度单位,且以原点O为极点,以x轴正半轴为极轴)中,曲线C的极坐标方程为ρ2-4ρco sθ+3=0.
①求直线l普通方程和曲线C的直角坐标方程;
②设点P是曲线C上的一个动点,求它到直线l的距离的取值范围.
(3)已知函数f(x)=|x-1|+|x+1|.
①求不等式f(x)≥3的解集;
②若关于x的不等式f(x)≥a2-a在R上恒成立,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

www.ks5u.co

已知函数

   (I)当a<0时,求函数的单调区间;

   (II)若函数f(x)在[1,e]上的最小值是求a的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

设函数f(x)=在区间上单调递减,则实数a的取值范围是(    )

  A.                         B.                 C.                      D..Co

查看答案和解析>>

同步练习册答案