精英家教网 > 高中数学 > 题目详情
精英家教网如图,△ABC中,AB=4,AC=8,∠BAC=60°,延长CB到D,使BA=BD,当E点在线段AB上移动时,若
AE
AC
AD
,当λ取最大值时,λ-μ的值是
 
分析:由题意知,当λ取最大值时,点E与点B重合.△ABC中,由余弦定理求得BC 的值,根据λ=
DB
DC
,μ=
CB
CD
,求出 λ和μ 的值,从而得到λ-μ的值.
解答:解:如图所示:设AM∥BN,且 AM=BN,由题意知,当λ取最大值时,点E与点B重合.△ABC中,由余弦定理
求得BC=
16 +64 - 2×4×8cos60°
=4
3

又∵
AE
AC
AD
,∴λ=
AM
AC
=
DB
DC
=
4
4+4
3
=
3
-1
2

μ=
AN
AD
=
CB
CD
=
4
3
4+4
3
=
3-
3
2
,λ-μ=
3
-2

故答案为:
3
-2
精英家教网
点评:本题考查余弦定理,两个向量的加减法的法则,以及其几何意义,判断当λ取最大值时,点E与点B重合,是解题的突破口,求出 λ和μ 的值,是解题的关键.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

如图,△ABC中,∠A=90°,AB=4,AC=3,平面ABC外一点P在平面ABC内的射影是AB中点M,二面角P-AC-B的大小为45°.
(I)求二面角P-BC-A的正切值;
(II)求二面角C-PB-A的正切值.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图在△ABC中,AB⊥AC,
BD
=
5
3
BC
|
AC
|
=2,则
AC
AD
=(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•宁波模拟)如图,△ABC中,∠B=90°,AB=
2
,BC=1,D、 E
两点分别在线段AB、AC上,满足
AD
AB
=
AE
AC
=λ,λ∈(0,1)
.现将△ABC沿DE折成直二面角A-DE-B.
(1)求证:当λ=
1
2
时,面ADC⊥面ABE;
(2)当λ∈(0,1)时,直线AD与平面ABE所成角能否等于
π
6
?若能,求出λ的值;若不能,请说明理由.

查看答案和解析>>

科目:高中数学 来源:2014届黑龙江大庆实验中学高二上学期开学考试理科数学试卷(解析版) 题型:解答题

(本题满分12分)如图,ΔABC中,∠A=90°,AB=4,AC=3,平面ABC外一点P在平面ABC内的射影是AB中点M,二面角P—AC—B的大小为45°.

(I)求二面角P—BC—A的正切值;

(II)求二面角C—PB—A的正切值.

 

查看答案和解析>>

科目:高中数学 来源:2012-2013学年黑龙江省大庆实验中学高二(上)期初数学试卷(理科)(解析版) 题型:解答题

如图,△ABC中,∠A=90°,AB=4,AC=3,平面ABC外一点P在平面ABC内的射影是AB中点M,二面角P-AC-B的大小为45°.
(I)求二面角P-BC-A的正切值;
(II)求二面角C-PB-A的正切值.

查看答案和解析>>

同步练习册答案