精英家教网 > 高中数学 > 题目详情

已知函数f(x)=数学公式
(1)写出f(x)的单调递增区间,并证明.
(2)在f(x)的单调递增区间上,求f(x)的反函数f --1(x).

解:(1)f(x)的单调递增区间(-1,3].
证明:设3≥x2>x1>-1,f(x1)-f(x2)=-=
-1==<0,
∴0<<1,
∴f(x1)-f(x2)<0,故f(x)在(-1,3]上是增函数.
(2)由于f(x)的单调递增区间为(-1,3]上,可得 0<f(x)≤2,
∵f(x)=
∴7+6x-x2=4y,(x-3)2=16-4y
∴x=3-
∴f(x)的反函数f --1(x)=3- ( 0<x≤2).
分析:(1)f(x)的单调递增区间(-1,3],设3≥x2>x1>-1,化简f(x1)-f(x2) 的解析式,判断符号小于零,可得f(x)在(-1,3]上是增函数.
(2)由于f(x)的单调递增区间为(-1,3]上,可得 0<f(x)≤2.由原函数的解析式求得 x=3-,从而求得反函数f --1(x).
点评:本题主要考查函数的单调性的判断和证明,求一个函数的反函数的方法,注意反函数的定义域是原函数的值域,属于中档题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知函数f(x)=sinxcosφ+cosxsinφ(其中x∈R,0<φ<π).
(1)求函数f(x)的最小正周期;
(2)若函数y=f(2x+
π
4
)
的图象关于直线x=
π
6
对称,求φ的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)为定义在R上的奇函数,且当x>0时,f(x)=(sinx+cosx)2+2cos2x,
(1)求x<0,时f(x)的表达式;
(2)若关于x的方程f(x)-a=o有解,求实数a的范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=aInx-ax,(a∈R)
(1)求f(x)的单调递增区间;(文科可参考公式:(Inx)=
1
x

(2)若f′(2)=1,记函数g(x)=x3+x2[f(x)+
m
2
]
,若g(x)在区间(1,3)上总不单调,求实数m的范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=x2-bx的图象在点A(1,f(1))处的切线l与直线3x-y+2=0平行,若数列{
1
f(n)
}
的前n项和为Sn,则S2010的值为(  )
A、
2011
2012
B、
2010
2011
C、
2009
2010
D、
2008
2009

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)是定义在区间(-1,1)上的奇函数,且对于x∈(-1,1)恒有f’(x)<0成立,若f(-2a2+2)+f(a2+2a+1)<0,则实数a的取值范围是
 

查看答案和解析>>

同步练习册答案