【题目】东莞某家具生产厂家根据市场调查分析,决定调整新产品生产方案,准备每周(按40个工时计算)生产书桌、书柜、电脑椅共120张,且书桌至少生产20张.已知生产这些家具每张所需工时和每张产值如表:
家具名称 | 书桌 | 书柜 | 电脑椅 |
工 时 | |||
产值(千元) | 4 | 3 | 2 |
问每周应生产书桌、书柜、电脑椅各多少张,才能使产值最高?最高产值是多少?(以千元为单位)
【答案】解:设每周生产书桌x张、书柜y张,则生产电脑椅120﹣x﹣y张,产值为z千元,
则依题意得z=4x+3y+2(120﹣x﹣y)=2x+y+240,
由题意得x,y满足 ,
即 ,
画出可行域如图所示.
解方程组 ,得 ,即M(20,60).
做出直线l0:2x+y=0,
平移l0过点M(20,60)时,目标函数有最大值,zmax=2×20+60+240=340(千元).
答:每周应生产书桌20张,书柜60张,电脑椅40张,才能使产值最高,最高产值是340千元.
【解析】设每周生产书桌x张、书柜y张,则生产电脑椅120﹣x﹣y张,产值为z千元,由题意列出关于x,y的不等式组,再求出线性目标函数z=4x+3y+2(120﹣x﹣y)=2x+y+240,
由约束条件作出可行域,化目标函数为直线方程的斜截式,数形结合得到最优解,联立方程组求得最优解的坐标,代入目标函数得答案.
科目:高中数学 来源: 题型:
【题目】已知函数f(x)=ax2+bx在x=1处取得极值2.
(1)求f(x)的解析式;
(2)若(m+3)x﹣x2ex+2x2≤f(x)对于任意的x∈(0,+∞)成立,求实数m的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,正三棱锥A﹣BCD的侧棱长为2,底面BCD的边长为2 ,E,分别为BC,BD的中点,则三棱锥A﹣BEF的外接球的半径R= , 内切球半径r= .
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】设A,B是非空的集合,如果按某一个确定的对应关系f,使对于集合A中的任意一个元素x,在集合中B都有唯一确定的元素y与之对应,那么就称对应f:A→B为从集合A到集合B的一个映射,设f:x→ 是从集合A到集合B的一个映射.①若A={0,1,2},则A∩B=;②若B={1,2},则A∩B= .
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知椭圆E: 过点 ,离心率为 ,点F1 , F2分别为其左、右焦点.
(1)求椭圆E的标准方程;
(2)是否存在圆心在原点的圆,使得该圆的任意一条切线与椭圆E恒有两个交点P,Q,且 ?若存在,求出该圆的方程,并求|PQ|的最大值;若不存在,请说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数f(x)=x2﹣3mx+n(m>0)的两个零点分别为1和2.
(1)求m、n的值;
(2)若不等式f(x)﹣k>0在x∈[0,5]恒成立,求k的取值范围.
(3)令 ,若函数F(x)=g(2x)﹣r2x在x∈[﹣1,1]上有零点,求实数r的取值范围.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com