精英家教网 > 高中数学 > 题目详情
过点A(-3,0)且离心率e=
5
3
的椭圆的标准方程是(  )
A、
x2
9
+
y2
4
=1
B、
x2
4
+
y2
9
=1
C、
x2
9
+
y2
4
=1或
x2
9
+
y2
81
4
=1
D、
x2
9
+
y2
4
=1或
x2
81
4
+
y2
9
=1
考点:椭圆的标准方程
专题:圆锥曲线的定义、性质与方程
分析:分焦点在x轴和y轴分别设出椭圆的方程,然后结合已知条件及隐含条件a2=b2+c2求得b(a)的值,则椭圆的标准方程可求.
解答: 解:当椭圆焦点在x轴上时,设椭圆方程为
x2
a2
+
y2
b2
=1(a>b>0)

由题意得,a=3,
c
a
=
5
3

∴c=
5
,则b2=a2-c2=9-5=4.
∴椭圆方程为
x2
9
+
y2
4
=1

当椭圆的焦点在y轴上时,设椭圆方程为
y2
a2
+
x2
b2
=1
(a>b>0),
则b=3,
c
a
=
5
3

又a2=b2+c2,解得:a2=
81
4

∴椭圆的标准方程为:
x2
9
+
y2
81
4
=1

故椭圆方程为
x2
9
+
y2
4
=1
x2
9
+
y2
81
4
=1

故选:C.
点评:本题考查了椭圆的标准方程的求法,考查了椭圆的简单几何性质,是基础题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

命题p:关于x的不等式x2+2ax+4>0,对一切x∈R恒成立.命题q:抛物线y2=4ax的焦点在(1,0)的左侧,若p∨q为真命题,p∧q为假命题,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=
1
2
x2-alnx,其中a>0.
(1)若a=3.求曲线f(x)在(1,f(1))处的切线方程;
(2)若f(x)在区间(1,e)上恰有两个零点,求a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=x3+ax2+bx+c.且0<f(-1)=f(-2)=f(-3)≤3,则(  )
A、c≤3B、3<c≤6
C、6<c≤9D、c>9

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=ln(1+x)-
kx
1+x
,k∈R.
(1)讨论f(x)的单调区间;
(2)当k=1时,求f(x)在[0,+∞)上的最小值,并证明
1
2
+
1
3
+
1
4
+…+
1
n+1
<ln(1+n).

查看答案和解析>>

科目:高中数学 来源: 题型:

已知动点P(x,y)到定点F(4,0)的距离与到定直线l:x=
25
4
的距离之比为
4
5

(Ⅰ)求动点P的轨迹W的方程;
(Ⅱ)过圆O:x2+y2=52+32上任一点Q(m,n)作轨迹W的两条切线l1,l2,求证:l1⊥l2
(Ⅲ)根据(Ⅱ)证明的结论,写出一个一般性结论(不需证明).

查看答案和解析>>

科目:高中数学 来源: 题型:

根据下列条件求双曲线的标准方程:
(1)经过点(
15
4
,3),且一条渐近线方程为4x+3y=0;
(2)P(0,6)与两个焦点的连线互相垂直,与两个顶点连线的夹角为
π
3

查看答案和解析>>

科目:高中数学 来源: 题型:

已知二次函数y=f(x)的图象经过点(0,-3),且f(4)=f(-2)=5,
(1)求f(x)的解析式
(2)若x∈[0,3],求函数f(x)对应的值域.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=x2+mx-|1-x2|(m∈R),若f(x)在区间(0,2)上有且只有1个零点,则实数m的取值范围是
 

查看答案和解析>>

同步练习册答案