精英家教网 > 高中数学 > 题目详情

【题目】已知函数.

(1)若函数上单调递增,求实数的取值范围;

(2)当时,若方程有两个不等实数根,求实数的取值范围,并证明.

【答案】(1)(2)见证明

【解析】

(1)求出,即恒成立,即恒成立;

(2)当时,方程,令,则有;不妨设,则.

解:(1)

∵函数上单调递增,

恒成立,即恒成立,

恒成立,即

,则

上单调递减,

上的最大值为.

的取值范围是.

(2)∵当时,方程

,则

时,,故单调递减,

时,,故单调递增,

.

若方程有两个不等实根,则有,即

时,

,令

单调递增,

,∴原方程有两个不等实根,

∴实数的取值范围是.

不妨设,则

,

.

,则

上单调递增,

∴当时,,即

,∴.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】四棱锥中,平面

1)求证: 平面平面;

2为棱上异于的点,且,求直线与平面所成角的正弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在直角坐标系,曲线的参数方程为(为参数),以坐标原点为极点,轴正半轴为极轴建立极坐标系,曲线的极坐标方程为.

(Ⅰ)求曲线的普通方程和曲线的直角坐标方程;

(Ⅱ)若点在曲线,在曲线,的最小值及此时点的直角坐标.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】为了缓解城市交通压力,某市市政府在市区一主要交通干道修建高架桥,两端的桥墩现已建好,已知这两桥墩相距m米,余下的工程只需建两端桥墩之间的桥面和桥墩.经测算,一个桥墩的工程费用为256万元;距离为x米的相邻两墩之间的桥面工程费用为(2)x万元.假设桥墩等距离分布,所有桥墩都视为点,且不考虑其他因素.记余下工程的费用为y万元.

(1)试写出工程费用y关于x的函数关系式;

(2)m640米时,需新建多少个桥墩才能使工程费用y最小?并求出其最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】基于移动网络技术的共享单车被称为“新四大发明”之一,短时间内就风靡全国,给人们带来新的出行体验,某共享单车运营公司的市场研究人员为了了解公司的经营状况,对公司最近6个月的市场占有率进行了统计,结果如下表:

月份

2018.11

2018.12

2019.01

2019.02

2019.03

2019.04

月份代码

1

2

3

4

5

6

11

13

16

15

20

21

(1)请用相关系数说明能否用线性回归模型拟合与月份代码之间的关系.如果能,请计算出关于的线性回归方程,如果不能,请说明理由;

(2)根据调研数据,公司决定再采购一批单车扩大市场,从成本1000元/辆的型车和800元/辆的型车中选购一种,两款单车使用寿命频数如下表:

车型 报废年限

1年

2年

3年

4年

总计

10

30

40

20

100

15

40

35

10

100

经测算,平均每辆单车每年能为公司带来500元的收入,不考虑除采购成本以外的其它成本,假设每辆单车的使用寿命都是整数年,用频率估计每辆车使用寿命的概率,以平均每辆单车所产生的利润的估计值为决策依据,如果你是公司负责人,会选择哪款车型?

参考数据:.

参考公式:相关系数.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】基于移动网络技术的共享单车被称为“新四大发明”之一,短时间内就风靡全国,给人们带来新的出行体验,某共享单车运营公司的市场研究人员为了了解公司的经营状况,对公司最近6个月的市场占有率进行了统计,结果如下表:

月份

2018.11

2018.12

2019.01

2019.02

2019.03

2019.04

月份代码

1

2

3

4

5

6

11

13

16

15

20

21

(1)请用相关系数说明能否用线性回归模型拟合与月份代码之间的关系.如果能,请计算出关于的线性回归方程,如果不能,请说明理由;

(2)根据调研数据,公司决定再采购一批单车扩大市场,从成本1000元/辆的型车和800元/辆的型车中选购一种,两款单车使用寿命频数如下表:

车型 报废年限

1年

2年

3年

4年

总计

10

30

40

20

100

15

40

35

10

100

经测算,平均每辆单车每年能为公司带来500元的收入,不考虑除采购成本以外的其它成本,假设每辆单车的使用寿命都是整数年,用频率估计每辆车使用寿命的概率,以平均每辆单车所产生的利润的估计值为决策依据,如果你是公司负责人,会选择哪款车型?

参考数据:.

参考公式:相关系数.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆的焦距等于,短轴与长轴的长度比等于.

(1)求椭圆的方程;

(2)设点在椭圆上,过作两直线,分别交椭圆于另外两点,当的倾斜角互为补角时,求面积的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数

(1)若函数存在极小值点,求的取值范围;

(2)当时,证明:

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】2018115日至10日,首届中国国际进口博览会在国家会展中心(上海)举行,吸引过来58个“一带一路”沿线国家的超过1000多家企业参展,成为共建“一带一路”的又一个重要支撑。某企业为了参加这次盛会,提升行业竞争力,加大了科技投入;该企业连续6年来得科技投入(百万元)与收益(百万元)的数据统计如下:

根据散点图的特点,甲认为样本点分布在指数曲线的周围,据此他对数据进行了一些初步处理,如下表:

其中

(1)()请根据表中数据,建立关于的回归方程(保留一位小数);

)根据所建立回归方程,若该企业想在下一年的收益达到2亿,则科技投入的费用至少要多少(其中)?

(2)乙认为样本点分布在二次曲线的周围,并计算得回归方程为,以及该回归模型的相关指数,试比较甲乙两位员工所建立的模型,谁的拟合效果更好.

附:对于一组数据,……,其回归直线方程的斜率和截距的最小二乘估计分别为,相关指数:

查看答案和解析>>

同步练习册答案