精英家教网 > 高中数学 > 题目详情

【题目】如图,是正方形,点在以为直径的半圆弧上(不与重合),为线段的中点,现将正方形沿折起,使得平面平面.

1)证明:平面.

2)三棱锥的体积最大时,求二面角的余弦值.

【答案】1)见解析(2

【解析】

1)利用面面垂直的性质定理证得平面,由此证得,根据圆的几何性质证得,由此证得平面.

2)判断出三棱锥的体积最大时点的位置.建立空间直角坐标系,通过平面和平面的法向量,计算出二面角的余弦值.

1)证明:因为平面平面是正方形,

所以平面.

因为平面,所以.

因为点在以为直径的半圆弧上,所以.

,所以平面.

2)解:显然,当点位于的中点时,的面积最大,三棱锥的体积也最大.

不妨设,记中点为

为原点,分别以的方向为轴、轴、轴的正方向,

建立如图所示的空间直角坐标系

设平面的法向量为

,得.

设平面的法向量为

,得

所以.

由图可知,二面角为锐角,故二面角的余弦值为.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知椭圆的左焦点为,直线与圆交于两点.

1)若直线过点,且,求被椭圆所截得的弦的长度;

2)若已知点在椭圆上,动点满足,请判断点与圆的位置关系,并说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数.

1)当时,求函数的单调区间及极值;

2)讨论函数的零点个数.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】201911日起新的个人所得税法开始实施,依据《中华人民共和国个人所得税法》可知纳税人实际取得工资、薪金(扣除专项、专项附加及依法确定的其他)所得不超过5000元(俗称起征点)的部分不征税,超出5000元部分为全月纳税所得额.新的税率表如下:

201911日后个人所得税税率表

全月应纳税所得额

税率(%

不超过3000元的部分

3

超过3000元至12000元的部分

10

超过12000元至25000元的部分

20

超过25000元至35000元的部分

25

个人所得税专项附加扣除是指个人所得税法规定的子女教育、继续教育、大病医疗、住房贷款利息、住房租金和赡养老人等六项专项附加扣除.其中赡养老人一项指纳税人赡养60岁(含)以上父母及其他法定赡养人的赡养支出,可按照以下标准扣除:纳税人为独生子女的,按照每月2000元的标准定额扣除;纳税人为非独生子女的,由其与兄弟姐妹分摊每月2000元的扣除额度,每人分摊的额度不能超过每月1000.某纳税人为独生子,且仅符合规定中的赡养老人的条件,如果他在201910月份应缴纳个人所得税款为390元,那么他当月的工资、薪金税后所得是______.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】南宋数学家杨辉在《详解九章算法》和《算法通变本末》中,提出了一些新的垛积公式,所讨论的高阶等差数列与一般等差数列不同,前后两项之差并不相等,但是逐项差数之差或者高次差成等差数列对这类高阶等差数列的研究,在杨辉之后一般称为垛积术”.现有高阶等差数列,其前7项分别为14814233654,则该数列的第19项为( )(注:

A.1624B.1024C.1198D.1560

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在水平地面上的不同两点处栽有两根笔直的电线杆,假设它们都垂直于地面,则在水平地面上视它们上端仰角相等的点的轨迹可能是(

①直线 ②圆 ③椭圆 ④抛物线

A.①②B.①③C.①②③D.②④

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在平面直角坐标系中,直线的参数方程为为参数).以坐标原点为极点,轴的非负半轴为极轴且取相同的单位长度建立极坐标系,曲线的极坐标方程为.

1)求直线的普通方程和曲线的直角坐标方程;

2)设是曲线上任意一点,直线与两坐标轴的交点分别为,求最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在平面直角坐标系中,曲线的参数方程为为参数),在以坐标原点为极点,轴的正半轴为极轴的极坐标系中,点的极坐标为,直线的极坐标方程为

(1)求直线的直角坐标方程与曲线的普通方程;

(2)若是曲线上的动点,为线段的中点,求点到直线的距离的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某学校运动会的立定跳远和30秒跳绳两个单项比赛分成预赛和决赛两个阶段.下表为10名学生的预赛成绩,其中有三个数据模糊.

学生序号

1

2

3

4

5

6

7

8

9

10

立定跳远(单位:米)

1.96

1.92

1.82

1.80

1.78

1.76

1.74

1.72

1.68

1.60

30秒跳绳(单位:次)

63

a

75

60

63

72

70

a1

b

65

在这10名学生中,进入立定跳远决赛的有8人,同时进入立定跳远决赛和30秒跳绳决赛的有6人,则

A2号学生进入30秒跳绳决赛

B5号学生进入30秒跳绳决赛

C8号学生进入30秒跳绳决赛

D9号学生进入30秒跳绳决赛

查看答案和解析>>

同步练习册答案