精英家教网 > 高中数学 > 题目详情

已知:如图,在四棱锥中,四边形为正方形,,且中点.
(Ⅰ)证明://平面
(Ⅱ)证明:平面平面
(Ⅲ)求二面角的正弦值.

(Ⅰ)见解析(Ⅱ)见解析(Ⅲ)

解析试题分析:(Ⅰ)

证明:连结BD交AC于点O,连结EO.                                     ……1分
O为BD中点,E为PD中点,
∴EO//PB.                                                             ……2分
EO平面AEC,PB平面AEC,                                         ……3分
∴ PB//平面AEC.                       
(Ⅱ)

证明:
PA⊥平面ABCD.平面ABCD,
.                                                          ……4分
在正方形ABCD中,                        ……5分
∴CD平面PAD.                                                       ……6分
平面PCD,
∴平面平面.                                              ……7分
(Ⅲ)如图,以A为坐标原点,所在直线分别为轴,轴,轴建立空
间直角坐标系.
                                         ……8分
由PA=AB=2可知A、B、C、D、P、E的坐标分别为
A(0, 0, 0), B(2, 0, 0),C(2, 2, 0),
D(0, 2, 0), P(0, 0, 2), E(0, 1, 1) .                                 ……9分
PA平面ABCD,∴是平面ABCD的法向量,=(0, 0, 2).
设平面AEC的法向量为, ,
 即 

∴令,则.                                           ……11分
,                            ……12分
二面角

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

(本小题满分12分)
如图所示,△是正三角形,都垂直于平面,且的中点.

(1)求证:∥平面
(2)求三棱锥的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(本小题满分12分)
正方体ABCD-A1B1C1D1中,E、G分别是BC、C1D1的中点,如图所示.

(1)求证:BD⊥A1C;
(2)求证:EG∥平面BB1D1D.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图,已知正方形ABCD的边长为1,FD⊥平面ABCD,EB⊥平面ABCD,FD=BE=1,M为BC边上的动点.试探究点M的位置,使F—AE—M为直二面角.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(本小题满分14分) 如图,在直三棱柱中,分别是的中点,点上,
 
求证:(1)EF∥平面ABC;    
(2)平面平面

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图,在四棱锥中,⊥底面,底面为梯形,,,,点在棱上,且

(1)求证:平面⊥平面
(2)求平面和平面所成锐二面角的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图,长方体AC1中,AB=2,BC=AA1=1.E、F、G分别为棱DD1、D1C1、BC的中点.

(1)求证:平面平面
(2)在底面A1D1上有一个靠近D1的四等分点H,求证: EH∥平面FGB1
(3)求四面体EFGB1的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图,已知四棱锥的底面是正方形,⊥底面,且,点分别为侧棱的中点 

(1)求证:∥平面
(2)求证:⊥平面.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(本题满分14分)
如图,在底面是正方形的四棱锥中,于点中点,上一点.
⑴求证:
⑵确定点在线段上的位置,使//平面,并说明理由.
⑶当二面角的大小为时,求与底面所成角的正切值.

查看答案和解析>>

同步练习册答案