精英家教网 > 高中数学 > 题目详情
(2012•江苏三模)已知长方体的长,宽,高为5,4,3,若用一个平面将此长方体截成两个三棱柱,则这两个三棱柱表面积之和的最大为
144
144
分析:有三种不同切法,把每次切的表面积算出来比较一下即可.首先分析怎样截截面最大,沿长方体侧面其中一条对角线切,求出原长方体的表面积再加上两个截面面积即可.
解答:解:用一个平面将此长方体截成两个三棱柱,有三种不同切法,
即分别沿长方体三个侧面其中一条对角线切.
且每个这两个三棱柱表面积之和原长方体的表面积再加上两个截面面积,
其中截面面积分别为3×
42+52
,4×
52+32
,5×
42+32

其中最大的是5×
42+32

S表面积最大=S三棱柱表面积×2=(5×4+3×5+5×5+3×4×
1
2
×2)×2=144
答:表面积之和最大是144.
故答案为:144
点评:此题主要考查长方体的表面积计算方法,解答关键是分析如何截的问题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

(2012•江苏三模)如图,在平面直角坐标系xoy中,圆C:(x+1)2+y2=16,点F(1,0),E是圆C上的一个动点,EF的垂直平分线PQ与CE交于点B,与EF交于点D.
(1)求点B的轨迹方程;
(2)当D位于y轴的正半轴上时,求直线PQ的方程;
(3)若G是圆上的另一个动点,且满足FG⊥FE.记线段EG的中点为M,试判断线段OM的长度是否为定值?若是,求出该定值;若不是,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•江苏三模)数列{an}的前n项和为Sn,存在常数A,B,C,使得an+Sn=An2+Bn+C对任意正整数n都成立.
(1)若数列{an}为等差数列,求证:3A-B+C=0;
(2)若A=-
1
2
,B=-
3
2
,C=1
,设bn=an+n,数列{nbn}的前n项和为Tn,求Tn
(3)若C=0,{an}是首项为1的等差数列,设P=
2012
i=1
1+
1
a
2
i
+
1
a
2
i+1
,求不超过P的最大整数的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•江苏三模)在平面直角坐标系中,不等式组
y≥0
x-2y≥0
x+y-3≤0
表示的区域为M,t≤x≤t+1表示的区域为N,若1<t<2,则M与N公共部分面积的最大值为
5
6
5
6

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•江苏三模)假定某人每次射击命中目标的概率均为
12
,现在连续射击3次.
(1)求此人至少命中目标2次的概率;
(2)若此人前3次射击都没有命中目标,再补射一次后结束射击;否则.射击结束.记此人射击结束时命中目标的次数为X,求X的数学期望.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•江苏三模)已知数列{an}满足a1=2,且对任意n∈N*,恒有nan+1=2(n+1)an
(1)求数列{an}的通项公式;
(2)设区间[
an
3n
an+1
3(n+1)
]
中的整数个数为bn,求数列{bn}的通项公式.

查看答案和解析>>

同步练习册答案