精英家教网 > 高中数学 > 题目详情
已知公比为q(0<q<1)的无穷等比数列{an}各项的和为9,无穷等比数列{an2}各项的和为
815

(1)求数列{an}的首项a1和公比q;
(2)对给定的k(k=1,2,3,…,n),设数列T(k)是首项为ak,公差为2ak-1的等差数列,求数列T(2)的通项公式及前10项的和.
分析:(1)根据所给的两个无穷等比递缩数列,利用教材中所给的各项之和的公式写出关于首项和公比的方程,解方程即可.
(2)根据第一问做出的结果,写出数列的首项和公差,进而写出数列的通项,求出数列的前10项之和,得到结果.
解答:解:(1)依题意可知,
a1
1-q
=9
a12
1-q2
=
81
5

?
a1=3
q=
2
3

(2)由(1)知,
数列T(2)的首项为t1=a2=2,公差d=2a2-1=3
T(2)=2+(n-1)×3=3n-1(n∈N*
S10=10×2+
1
2
×10×9×3=155

即数列T(2)的前10项之和为155.
点评:本题是一个数列求和的问题,这种问题在解题时注意看清数列的特征,看出数列是一个特殊数列,可以应用数列的求和公式做出结果,这是求数列的和的题目中比较简单的问题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知公比为q(0<q<1)的无穷等比数列{an}各项的和为9,无穷等比数列{an2}各项的和为
81
5

(1)求数列{an}的首项a1和公比q;
(2)对给定的k(k=1,2,3,…,n),设T(k)是首项为ak,公差为2ak-1的等差数列,求T(2)的前2007项之和;
(3)(理)设bi为数列T(i)的第i项,Sn=b1+b2+…+bn
①求Sn的表达式,并求出Sn取最大值时n的值.
②求正整数m(m>1),使得
lim
n→∞
Sn
nm
存在且不等于零.
(文)设bi为数列T(i)的第i项,Sn=b1+b2+…+bn:求Sn的表达式,并求正整数m(m>1),使得
lim
n→∞
Sn
nm
存在且不等于零.

查看答案和解析>>

科目:高中数学 来源:广东 题型:解答题

已知公比为q(0<q<1)的无穷等比数列{an}各项的和为9,无穷等比数列{an2}各项的和为
81
5

(1)求数列{an}的首项a1和公比q;
(2)对给定的k(k=1,2,3,…,n),设T(k)是首项为ak,公差为2ak-1的等差数列,求T(2)的前2007项之和;
(3)(理)设bi为数列T(i)的第i项,Sn=b1+b2+…+bn
①求Sn的表达式,并求出Sn取最大值时n的值.
②求正整数m(m>1),使得
lim
n→∞
Sn
nm
存在且不等于零.
(文)设bi为数列T(i)的第i项,Sn=b1+b2+…+bn:求Sn的表达式,并求正整数m(m>1),使得
lim
n→∞
Sn
nm
存在且不等于零.

查看答案和解析>>

科目:高中数学 来源:2006年广东省高考数学试卷(解析版) 题型:解答题

已知公比为q(0<q<1)的无穷等比数列{an}各项的和为9,无穷等比数列{an2}各项的和为
(1)求数列{an}的首项a1和公比q;
(2)对给定的k(k=1,2,3,…,n),设T(k)是首项为ak,公差为2ak-1的等差数列,求T(2)的前2007项之和;
(3)(理)设bi为数列T(i)的第i项,Sn=b1+b2+…+bn
①求Sn的表达式,并求出Sn取最大值时n的值.
②求正整数m(m>1),使得存在且不等于零.
(文)设bi为数列T(i)的第i项,Sn=b1+b2+…+bn:求Sn的表达式,并求正整数m(m>1),使得存在且不等于零.

查看答案和解析>>

科目:高中数学 来源:2009-2010年上海市华东师大二附中高三数学综合练习试卷(09)(解析版) 题型:解答题

已知公比为q(0<q<1)的无穷等比数列{an}各项的和为9,无穷等比数列{an2}各项的和为
(1)求数列{an}的首项a1和公比q;
(2)对给定的k(k=1,2,3,…,n),设T(k)是首项为ak,公差为2ak-1的等差数列,求T(2)的前2007项之和;
(3)(理)设bi为数列T(i)的第i项,Sn=b1+b2+…+bn
①求Sn的表达式,并求出Sn取最大值时n的值.
②求正整数m(m>1),使得存在且不等于零.
(文)设bi为数列T(i)的第i项,Sn=b1+b2+…+bn:求Sn的表达式,并求正整数m(m>1),使得存在且不等于零.

查看答案和解析>>

同步练习册答案