精英家教网 > 高中数学 > 题目详情
求证:tan2x-sin2x=tan2xsin2x.

证明:左边=-sin2x=

==sin2x·tan2x

=右边,所以原式成立.

练习册系列答案
相关习题

科目:高中数学 来源:2012年上海市春季高考数学试卷(解析版) 题型:解答题

定义向量=(a,b)的“相伴函数”为f(x)=asinx+bcosx,函数f(x)=asinx+bcosx的“相伴向量”为=(a,b)(其中O为坐标原点).记平面内所有向量的“相伴函数”构成的集合为S.
(1)设g(x)=3sin(x+)+4sinx,求证:g(x)∈S;
(2)已知h(x)=cos(x+α)+2cosx,且h(x)∈S,求其“相伴向量”的模;
(3)已知M(a,b)(b≠0)为圆C:(x-2)2+y2=1上一点,向量的“相伴函数”f(x)在x=x处取得最大值.当点M在圆C上运动时,求tan2x的取值范围.

查看答案和解析>>

同步练习册答案