精英家教网 > 高中数学 > 题目详情
6.高安二中高中年级早上7点早读,假设该校学生小x与小y在早上6:30-6:50之间到校且每人在该时间段的任何时间到校是等可能的,则小x比小y至少早5分钟到校的概率为$\frac{9}{32}$.

分析 设小x到校的时间为x,小y到校的时间为y.(x,y)可以看成平面中的点试验的全部结果所构成的区域为Ω={(x,y|0≤x≤20,0≤y≤20}是一个矩形区域,则小x比小y至少早5分钟到校事件A={(x,y)|y-x≥5}作出符合题意的图象,由图根据几何概率模型的规则求解即可.

解答 解:设小x到校的时间为x,小y到校的时间为y.
(x,y)可以看成平面中的点试验的全部结果所构成的区域为Ω={(x,y|0≤x≤20,0≤y≤20}是一个矩形区域,对应的面积S=20×20=400,
则小x比小y至少早5分钟到校事件A={x|y-x≥5}作出符合题意的图象,
则符合题意的区域为△ADE,联立$\left\{\begin{array}{l}{y-x=5}\\{y=20}\end{array}\right.$得$\left\{\begin{array}{l}{x=15}\\{y=20}\end{array}\right.$,即D(15,20),
联立$\left\{\begin{array}{l}{y-x=5}\\{x=0}\end{array}\right.$得$\left\{\begin{array}{l}{x=0}\\{y=5}\end{array}\right.$,即E(0,5),
则S△ADE=$\frac{1}{2}$×15×15=$\frac{225}{2}$
几何概率模型可知小张比小王至少早5分钟到校的概率为=$\frac{\frac{225}{2}}{400}$=$\frac{9}{32}$.
故答案为:$\frac{9}{32}$

点评 本题考查几何概率模型与模拟方法估计概率,求解的关键是掌握两种求概率的方法的定义及规则,求出对应区域的面积是解决本题的关键.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

16.用|A|表示非空集合A中集合元素个数(例如A={1,3,5},则|A|=3),定义M(a,b)=$\left\{{\begin{array}{l}{a,a≥b}\\{b,a<b}\end{array}}\right.({a,b∈R})$,若A={B|B⊆{1,2,3}且B中至少有一个奇数},C={x|x2-4|x|+3=0},那么M(|A|,|C|)可能取值的有(  )个.
A.1B.2C.3D.4

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.已知四边形ABCD内接于⊙O,AD:BC=1:2,BA、CD的延长线交于点E,且EF切⊙O于F.
(Ⅰ)求证:EB=2ED;
(Ⅱ)若AB=2,CD=5,求EF的长.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

14.已知函数f(x)=x2定义域是[a,2],值域是[0,4],则实数a的取值范围为-2≤a≤0.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

1.给出以下四个命题:
①已知命题p:?x∈R,tanx=2;命题q:?x∈R,x2-x+1≥0,则命题p且q是真命题;
②命题“若m≤1,则x2-2x+m=0有实根”的逆否命题;
③命题“x≥1,则x2≥1”的逆命题;
④命题“面积相等的三角形全等”的否命题.
其中正确命题的序号为①②④.(把你认为正确的命题序号都填上)

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

11.在等差数列{an}中,a4=0.8,a11=2.2,求a51+a52+…+a80

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.如图,已知AB是半圆O的直径,M,N,P是将半圆圆周四等分的三个分点,从A,B,M,N,P这5个点中任取3个点,则这3个点组成直角三角形的概率为(  )
A.$\frac{2}{5}$B.$\frac{7}{20}$C.$\frac{3}{10}$D.$\frac{1}{4}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.如图所求,已知四边形ABCD、EADM和MDCF都是边长为a的正方形,点P、Q分别是ED和AC的中点.
求:
(1)$\overrightarrow{PM}$与$\overrightarrow{FQ}$所成的角;
(2)P点到平面EFB的距离;
(3)异面直线PM与FQ的距离.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.已知抛物线y2=16x上有一点P,到准线的距离为20,求:
(1)点P到焦点的距离;
(2)点P的坐标.

查看答案和解析>>

同步练习册答案