分析 设小x到校的时间为x,小y到校的时间为y.(x,y)可以看成平面中的点试验的全部结果所构成的区域为Ω={(x,y|0≤x≤20,0≤y≤20}是一个矩形区域,则小x比小y至少早5分钟到校事件A={(x,y)|y-x≥5}作出符合题意的图象,由图根据几何概率模型的规则求解即可.
解答 解:设小x到校的时间为x,小y到校的时间为y.
(x,y)可以看成平面中的点试验的全部结果所构成的区域为Ω={(x,y|0≤x≤20,0≤y≤20}是一个矩形区域,对应的面积S=20×20=400,
则小x比小y至少早5分钟到校事件A={x|y-x≥5}作出符合题意的图象,
则符合题意的区域为△ADE,联立$\left\{\begin{array}{l}{y-x=5}\\{y=20}\end{array}\right.$得$\left\{\begin{array}{l}{x=15}\\{y=20}\end{array}\right.$,即D(15,20),
联立$\left\{\begin{array}{l}{y-x=5}\\{x=0}\end{array}\right.$得$\left\{\begin{array}{l}{x=0}\\{y=5}\end{array}\right.$,即E(0,5),
则S△ADE=$\frac{1}{2}$×15×15=$\frac{225}{2}$
几何概率模型可知小张比小王至少早5分钟到校的概率为=$\frac{\frac{225}{2}}{400}$=$\frac{9}{32}$.
故答案为:$\frac{9}{32}$
点评 本题考查几何概率模型与模拟方法估计概率,求解的关键是掌握两种求概率的方法的定义及规则,求出对应区域的面积是解决本题的关键.
科目:高中数学 来源: 题型:选择题
A. | 1 | B. | 2 | C. | 3 | D. | 4 |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
A. | $\frac{2}{5}$ | B. | $\frac{7}{20}$ | C. | $\frac{3}{10}$ | D. | $\frac{1}{4}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com