【题目】已知函数。
(I)若函数在区间上是单调递增函数,求实数的取值范围;
(II)若函数有两个极值点且,求证
【答案】(I)(Ⅱ)见证明
【解析】
(I)求得函数的导数,把函数在区间上是单调递增函数,转化为在上恒成立,即可求解.
(II)求得,把函数有两个极值点,转化为在内有两根,设,根据二次函数的性质求得,同时利用韦达定理,化简得,令,利用导数求得函数的单调性与最值,即可求解.
(I)由题意,函数,则,
又函数在区间上是单调递增函数,故在上恒成立,
即在上恒成立,故在上恒成立,
设,,则
故实数的取值范围为;
(II)易知,
依题意可知在内有两根,且,
设,则有,
又,
由根与系数关系有,
故,
令,
则有,,
又,,故存在唯一,使得
易知当时有,当时有,
故在上单调递减,在上单调递增,
又,,故对,均有,
故在上单调递减,又,,故,
即,命题得证.
科目:高中数学 来源: 题型:
【题目】设命题p:实数满足不等式;
命题q:关于不等式对任意的恒成立.
(1)若命题为真命题,求实数的取值范围;
(2)若“”为假命题,“”为真命题,求实数的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】选修4-4:坐标系与参数方程
在平面直角坐标系中,已知圆的参数方程为(为参数,).以原点为极点,轴的正半轴为极轴,取相同的长度单位建立极坐标系,直线的极坐标方程是.
(1)若直线与圆有公共点,试求实数的取值范围;
(2)当时,过点且与直线平行的直线交圆于两点,求的值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】一只药用昆虫的产卵数与一定范围内与温度有关, 现收集了该种药用昆虫的6组观测数据如下表:
温度/℃ | 21 | 23 | 24 | 27 | 29 | 32 |
产卵数/个 | 6 | 11 | 20 | 27 | 57 | 77 |
(1)若用线性回归模型,求关于的回归方程=x+(精确到0.1);
(2)若用非线性回归模型求关的回归方程为 且相关指数
( i )试与 (1)中的线性回归模型相比,用 说明哪种模型的拟合效果更好.
( ii )用拟合效果好的模型预测温度为时该种药用昆虫的产卵数(结果取整数).
附:一组数据(x1,y1), (x2,y2), ...,(xn,yn), 其回归直线=x+的斜率和截距的最小二乘估计为,,相关指数.
。
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】若存在实常数k和b,使得函数对其公共定义域上的任意实数x都满足:恒成立,则称此直线的“隔离直线”,已知函数(e为自然对数的底数),有下列命题:
①内单调递增;
②之间存在“隔离直线”,且b的最小值为;
③之间存在“隔离直线”,且k的取值范围是;
④之间存在唯一的“隔离直线”.
其中真命题的序号为__________.(请填写正确命题的序号)
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】己知椭圆的焦距为,以椭圆C的右顶点A为圆心的圆与直线相交于P,Q两点,且.
(I)求椭圆C的标准方程和圆A的方程。
(II)不过原点的直线l与椭圆C交于M,N两点,已知直线OM,l,ON的斜率成等比数列,记以线段OM,线段ON为直径的圆的面积分别为的值是否为定值?若是,求出此值:若不是,说明理由.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com