精英家教网 > 高中数学 > 题目详情

【题目】在平面四边形ABCD中,AB=8AD=5CD=A=D=

(Ⅰ)求△ABD的内切圆的半径;

(Ⅱ)求BC的长.

【答案】(Ⅰ)(Ⅱ)

【解析】试题分析:(Ⅰ)在△ABD中,由余弦定理,得,设△ABD的内切圆的半径为r

可求得(Ⅱ)连接BD,由已知,利用余弦定理可求BD的值,进而可求cosADB的值,利用两角差的余弦函数公式可求cosBDC的值,进而利用余弦定理即可得解BC的值.

试题解析:

(Ⅰ)在△ABD中,AB=8,AD=5,∠A=

由余弦定理,得

设△ABD的内切圆的半径为r

,解得

(Ⅱ)设∠ADB= ,∠BDC= ,则

在△ABD中,由余弦定理,得

,∴

在△BDC中,CD=,由余弦定理,得

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】函数,其图象与轴交于 两点,且.

(Ⅰ)求的取值范围;

(Ⅱ)证明: 的导函数).

(Ⅲ)设点在函数图象上,且为等腰直角三角形,记,求的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某项竞赛分为初赛、复赛、决赛三个阶段进行,每个阶段选手要回答一个问题.规定正确回答问题者进入下一阶段竞赛,否则即遭淘汰.已知某选手通过初赛、复赛、决赛的概率分别是 ,且各阶段通过与否相互独立.

(1)求该选手在复赛阶段被淘汰的概率;

(2)设该选手在竞赛中回答问题的个数为,求的分布列、数学期望.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】下列五个命题:

(1)函数内单调递增。

(2)函数的最小正周期为2

(3)函数的图像关于点对称。

(4)函数的图像关于直线成轴对称。

(5)把函数 的图象向右平移得到函数的图象。

其中真命题的序号是________________

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在正方体中, 为线段上的动点,则下列判断错误的是( )

A. 平面 B. 平面

C. D. 三棱锥的体积与点位置有关

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某花店每天以每枝元的价格从农场购进若干枝玫瑰花,然后以每枝元的价格出售,如果当天卖不完,剩下的玫瑰花作垃圾处理.

I)若花店一天购进枝玫瑰花,写出当天的利润(单位:元)关于当天需求量(单位:枝, )的函数解析式.

II)花店记录了天玫瑰花的日需求量(单位:枝),整理得下表:

日需求量

频数

天记录的各需求量的频率作为各需求量发生的概率.

i)若花店一天购进枝玫瑰花, 表示当天的利润(单位:元),求的分布列,数学期望.

ii)若花店计划一天购进枝或枝玫瑰花,你认为应购进枝还是枝?只写结论.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在四棱柱中, 底面 ,且 .点在棱上,平面与棱相交于点

)求证: 平面

)求证: 平面

)求三棱锥的体积的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】对于数集,其中 ,定义向量集.若对于任意,使得,则称具有性质.例如具有性质

)若,且具有性质,求的值.

)若具有性质,求证: ,且当时,

)若具有性质,且 为常数),求有穷数列 的通项公式.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知数列{an}的首项

(1)求证:数列为等比数列;

(2)记,若Sn<100,求最大正整数n

(3)是否存在互不相等的正整数msn,使msn成等差数列,且am-1,as-1,an-1成等比数列?如果存在,请给以证明;如果不存在,请说明理由.

查看答案和解析>>

同步练习册答案