精英家教网 > 高中数学 > 题目详情

【题目】已知m>0,n>0,x=m+n,y=
(1)求xy的最小值;
(2)若2x+y=15,求x的取值范围.

【答案】
(1)解:m>0,n>0,依题意,xy=(m+n)( )=17+ , ≥17+2 =25,

当且仅当n=4m时“=”成立


(2)解:∵2x+y=15,∴y=15﹣2x,

由(1)得:xy≥25,

∴x(15﹣2x)≥25,

∴2x2﹣15x+25≤0,

≤x≤5


【解析】(1)应用级别不等式的性质求出其最小值即可;(2)求出y=15﹣2x,由(1)得:xy≥25,消去y解关于x的不等式即可.
【考点精析】利用基本不等式对题目进行判断即可得到答案,需要熟知基本不等式:,(当且仅当时取到等号);变形公式:

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】如图,边长为4的正方形ABCD所在平面与正三角形PAD所在平面互相垂直,M,Q分别为PC,AD的中点.
(1)求证:PA∥平面MBD;
(2)求二面角P﹣BD﹣A的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知关于x,y的方程C:x2+y2﹣2x﹣4y+m=0
(1)当方程C表示圆时,求m的取值范围;
(2)若圆C与直线l1:x+2y﹣4=0相交于M,N两点,且|MN|= ,求m的值;
(3)在(2)条件下,若圆C上存在四点到直线l2:x﹣2y+b=0的距离均为 ,试求b的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,记正方形ABCD四条边的中点为S,M,N,T,连接四个中点得小正方形SMNT.将正方形ABCD,正方形SMNT绕对角线AC旋转一周得到的两个旋转体的体积依次记为V1 , V2 , 则V1:V2=(

A.8:1
B.2:1
C.4:3
D.8:3

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在三棱柱A1B1C1﹣A2B2C2中,各侧棱均垂直于底面,∠A1B1C1=90°,A1B1=B1C1=3,C1M=2B1N=2,则直线B1C1与平面A1MN所成角的正弦值为

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设函数f(x)= x﹣lnx(x>0),则函数f(x)(
A.在区间(0,1)内有零点,在区间(1,+∞)内无零点
B.在区间(0,1)内有零点,在区间(1,+∞)内有零点
C.在区间(0,3),(3,+∞)均无零点
D.在区间(0,3),(3,+∞)均有零点

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】一个工厂生产某种产品每年需要固定投资 万元,此外每生产 件该产品还需要增加投资 万元,年产量为 件.当 时,年销售总收入为 万元;当 时,年销售总收入为 万元.记该工厂生产并销售这种产品所得的年利润为 万元。
(1)求 (万元)关于 (件)的函数关系式;
(2)该工厂的年产量为多少件时,所得年利润最大?并求出最大值.(年利润=年销售总收入年总投资)

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】为了得到函数 的图象,可以将函数y=cos2x的图象( )
A.向左平移 个单位长度
B.向左平移 个单位长度
C.向右平移 个单位长度
D.向右平移 个单位长度

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在四棱锥 中, 底面 ,点 为棱 的中点.

(1)证明:
(2)证明
(3)求三棱锥 的体积.

查看答案和解析>>

同步练习册答案