分析 由同角三角函数间的基本关系得到sin2α+cos2α=1,变形后代入已知等式代入求出cosα的值,确定出α的度数,代入原式计算即可得到结果.
解答 解:∵sin2α+cos2α=1,∴sin2α=1-cos2α,
∴sin6α+cos6α=(sin2α)3+cos6α=$\frac{1}{4}$,
把sin2α=1-cos2α代入得:(1-cos2α)3+cos6α=$\frac{1}{4}$,
整理得:(2cos2α-1)2=0,
∴2cos2α-1=0,即cos2α=$\frac{1}{2}$,
∴cosα=$\frac{\sqrt{2}}{2}$,即α=$\frac{π}{4}$,
则cos2015α=cos$\frac{2015π}{4}$=cos(504π-$\frac{π}{4}$)=cos(-$\frac{π}{4}$)=cos$\frac{π}{4}$=$\frac{\sqrt{2}}{2}$.
点评 此题考查了同角三角函数基本关系的运用,熟练掌握基本关系是解本题的关键.
科目:高中数学 来源: 题型:选择题
A. | a>b>c | B. | b>a>c | C. | c>a>b | D. | b>c>a |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
A. | (0,1) | B. | [0,1] | C. | (1,+∞) | D. | [1,+∞) |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
A. | 15 | B. | 16 | C. | 17 | D. | 18 |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com