A. | $\frac{4}{9}$ | B. | $\frac{2}{3}$ | C. | $\frac{5}{9}$ | D. | $\frac{9}{5}$ |
分析 先利用两角和的正切公式求得tanx的值,从而求得tan2x,即可求得$\frac{tanx}{tan2x}$.
解答 解:∵tan(x+$\frac{π}{4}$)=2,
∴$\frac{tanx+1}{1-tanx}$=2,
解得tanx=$\frac{1}{3}$;
∴tan2x=$\frac{2tanx}{1-ta{n}^{2}x}$=$\frac{\frac{2}{3}}{1-\frac{1}{9}}$=$\frac{3}{4}$
∴$\frac{tanx}{tan2x}$=$\frac{\frac{1}{3}}{\frac{3}{4}}$=$\frac{4}{9}$
故选:A.
点评 本题考查了二倍角的正切与两角和的正切公式,体现了方程思想,是基础题.
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
A. | 关于原点对称 | B. | 关于点($\frac{π}{6}$,0)对称 | ||
C. | 关于y轴对称 | D. | 关于直线x=$\frac{π}{6}$对称 |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
A. | 1 | B. | $\frac{1}{2}$ | C. | $\frac{π}{2}$ | D. | $\frac{2}{π}$ |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com