精英家教网 > 高中数学 > 题目详情

【题目】已知函数为实常数).

)若的极值点,求实数的取值范围.

)讨论函数上的单调性.

)若存在,使得成立,求实数的取值范围.

【答案】见解析

【解析】试题分析:(1) 由题, 的极值点,

可得

(2) 三种情况讨论函数的单调性即可.

(3)结合(2)的单调性,分别求 以及时a的范围,综合取并集可得.

试题解析:

的极值点,

,即时,

此时, 上单调增,

时, 时,

时,

上单调递减,在上单调递增,

时,

此时, 上单调递减.

)当时,上单调递增,

的最小值为

时, 上单调递减,在上单调递增,

的最小值为

时, 上单调递减,

的最小值为

综上可得:

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】某小区为了提高小区内人员的读书兴趣,特举办读书活动,准备进一定量的书籍丰富小区图书站,由于不同年龄段需要看不同类型的书籍,为了合理配备资源,现对小区看书人员进行年龄调查,随机抽取了一天40名读书者进行调查,将他们的年龄分成6段: 后得到如图所示的频率分布直方图,问:

(1)在40名读书者中年龄分布在的人数;

(2)估计40名读书者年龄的平均数和中位数;

(3)若从年龄在的读书者中任取2名,求这两名读书者年龄在的人数的分布列和数学期望.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数.

1)求函数的最小正周期;

2)求函数的单调递增区间;

3)若把向右平移个单位得到函数,求在区间上的最小值和最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在吸烟与患肺癌这两个分类变量的独立性检验的计算中,下列说法正确的是

A. 的观测值为,在犯错误的概率不超过的前提下认为吸烟与患肺癌有关系,那么在100个吸烟的人中必有99人患有肺癌.

B. 由独立性检验可知,在犯错误的概率不超过的前提下认为吸烟与患肺癌有关系时,我们说某人吸烟,那么他有的可能患有肺癌.

C. 若从统计量中求出在犯错误的概率不超过的前提下认为吸烟与患肺癌有关系,是指有的可能性使得判断出现错误.

D. 以上三种说法都不正确.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知圆锥曲线 (是参数)和定点,是圆锥曲线的左、右焦点.

(1)求经过点且垂直于直线的直线的参数方程;

(2)以坐标原点为极点, 轴的正半轴为极轴建立极坐标系,求直线的极坐标方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数为常数),函数,(为常数,且).

(1)若函数有且只有1个零点,求的取值的集合.

(2)当(1)中的取最大值时,求证:.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数.

(Ⅰ)若方程只有一解求实数的取值范围

(Ⅱ)设函数若对任意正实数 恒成立求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,三棱柱中,侧棱底面,且各棱长均相等, 分别为棱的中点.

(1)证明平面

(2)证明平面平面

(3)求直线与平面所成角的正弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在棱长为a的正方体ABCDA1B1C1D1中,MN分别是AA1D1C1的中点,过DMN三点的平面与正方体的下底面A1B1C1D1相交于直线l.

1)画出直线l的位置,并简单指出作图依据;

2)设lA1B1P,求线段PB1的长.

查看答案和解析>>

同步练习册答案