精英家教网 > 高中数学 > 题目详情
精英家教网如图,已知正三棱柱ABC-A1B1C1的所有棱长都是2,D、E分别为CC1、A1B1的中点.
(1)求证C1E∥平面A1BD;
(2)求证AB1⊥平面A1BD;
(3)求三棱锥A1-C1DE的体积.
分析:(1)要证C1E∥平面A1BD;只须证明直线平行平面内的一条直线,图中DF即可.
(2)要证AB1⊥平面A1BD;只须证明只须垂直平面内的两条相交直线A1B、DF 即可,前者利用正方形证明,后者△A1BD说明是等腰三角形.
(3)求三棱锥A1-C1DE的体积.利用等底面面积等高体积相等,转化为D-A1EC1的体积,再转化为D-A1B1C1的体积求解即可.
解答:精英家教网解:(1)设AB1与A1B相交于F,连EF,DF.则EF为△AA1B1的中位线,∴EF∥=
1
2
A1A.
∵C1D∥=
1
2
A1A,∴EF∥=C1D,则四边形EFDC1为平行四边形,∴DF∥C1E.
∵C1E?平面A1BD,DF?平面A1BD,∴C1E∥平面A1BD.
(2)取BC的中点H,连接AH,B1H,
由正三棱柱ABC-A1B1C1,知AH⊥BC,
∵B1B⊥平面ABC,∴B1B⊥AH.∵B1B∩BC=B,∴AH⊥平面B1BCC1.∴AH⊥BD.
在正方形B1BCC1中,∵tan∠BB1H=tan∠CBD=
1
2
,∴∠BB1H=∠CBD.则B1H⊥BD.
∵AH⊥∩B1H=H,∴BD⊥平面AHB1.∴BD⊥AB1
在正方形A1ABB1中,∵A1B⊥AB1.而A1B∩BD=B,∴AB1⊥平面A1BD.
(3)∵E为AB的中点,∴VA1-C1DE=VD-A1EC1=
1
2
VD-A1B1C1=
1
2
×
1
3
×
3
4
×22×1=
3
6
点评:本题考查棱柱的结构特征,考查棱柱、棱锥的体积,考查转化思想,是中档题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

如图,已知正三棱柱ABC-A1B1C1各棱长都为a,P为线段A1B上的动点.
(Ⅰ)试确定A1P:PB的值,使得PC⊥AB;
(Ⅱ)若A1P:PB=2:3,求二面角P-AC-B的大小.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,已知正三棱柱ABC-A1B1C1的底面边长为2cm,高位5cm,一质点自A点出发,沿着三棱柱的侧面绕行两周到达A1点的最短路线的长为
13
13
cm.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,已知正三棱柱ABC-A1B1C1的各条棱长都为a,P为A1B上的点.
(1)试确定
A1P
PB
的值,使得PC⊥AB;
(2)若
A1P
PB
=
2
3
,求二面角P-AC-B的大小;
(3)在(2)的条件下,求C1到平面PAC的距离.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,已知正三棱柱ABC-A1B1C1,D是AC的中点,C1DC=600,则异面直线AB1与C1D所成角的余弦值为(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

(2011•重庆三模)如图,已知正三棱柱ABC-A1B1C1的所有棱长均为a,截面AB1C和A1BC1相交于DE,则三棱锥B-B1DE的体积为
3
48
a3
3
48
a3

查看答案和解析>>

同步练习册答案