精英家教网 > 高中数学 > 题目详情
已知锐角△ABC的三个内角A,B,C的对边分别为a,b,c,且(a2+b2-c2)tanC=
3
ab.
(Ⅰ)求角C;
(Ⅱ)若c=
3
,求2a-b的取值范围.
分析:(Ⅰ)利用余弦定理列出关系式,结合已知等式,得到sinC的值,由三角形ABC为锐角三角形,利用特殊角的三角函数值即可求出角C的度数;
(Ⅱ)利用正弦定理化简2a-b得到关系式,用A表示出B代入,利用两角和与差的正弦函数公式化简,整理后再利用两角和与差的正弦函数公式化为一个角的正弦函数,由三角形ABC为锐角三角形,得到A的范围,确定出这个角的范围,利用正弦函数的图象与性质求出2a-b的范围即可.
解答:解:(Ⅰ)由余弦定理可得a2+b2-c2=2abcosC,
结合(a2+b2-c2)tanC=
3
ab,可得2cosCtanC=2sinC=
3
,即sinC=
3
2

∵△ABC为锐角三角形,∴C=
π
3

(Ⅱ)由正弦定理得:
a
sinA
=
b
sinB
=
c
sinC
=
3
3
2
=2,
∴2a-b=4sinA-2sinB,
∵B=
3
-A,
∴2a-b=4sinA-2sin(
3
-A)=3sinA-
3
cosA=2
3
sin(A-
π
6
),
∵△ABC为锐角三角形,
∴A∈(
π
6
π
2
),即A-
π
6
∈(0,
π
3
),
则2a-b的取值范围为(0,3).
点评:此题考查了正弦、余弦定理,正弦函数的定义域与值域,同角三角函数间的基本关系,以及特殊角的三角函数值,熟练掌握定理及公式是解本题的关键.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知锐角△ABC的三内角A、B、C的对边分别是a,b,c,且(b2+c2-a2)tanA=
3
bc

(1)求角A的大小;
(2)求sin(A+10°)•[1-
3
tan(A-10°)]
的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知锐角△ABC的三个内角A,B,C所对的边分别为a,b,c,且满足(a2+c2-b2)tanB=
3
ac,则角B为(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=2sin(ωx-
π
6
),(A>0,ω>0,x∈R)
,且f(x)的最小正周期是2π.
(1)求ω及f(0)的值;
(2)已知锐角△ABC的三个内角分别为A、B、C,若f(A+
3
)=
8
5
f(B+
6
)=-
30
17
,求sinC的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•东莞一模)向量
a
=(
1
2
1
2
sinx+
3
2
cosx)
b
=(1,y)
,已知
a
b
,且有函数y=f(x).
(1)求函数y=f(x)的周期;
(2)已知锐角△ABC的三个内角分别为A,B,C,若有f(A-
π
3
)=
3
,边BC=
7
sinB=
21
7
,求AC的长及△ABC的面积.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2011•崇明县二模)已知向量
a
=(sinx,cosx),
b
=(1,
3
),设函数f(x)=
a
b

(1)若x∈[0,π],求函数f(x)的单调区间;
(2)已知锐角△ABC的三内角A、B、C所对的边是a、b、c,若有f(A-
π
3
)=
3
,a=
7
,sinB=
21
7
,求c边的长度.

查看答案和解析>>

同步练习册答案