精英家教网 > 高中数学 > 题目详情
标准方程下的椭圆的短轴长为,焦点,右准线轴相交于点,且,过点的直线和椭圆相交于点.
(1)求椭圆的方程和离心率;
(2)若,求直线的方程.
 (1);(2)
本试题主要是考查了直线与圆的位置关系综合运用。
(1)由题意,设该椭圆方程为,根据条件有
得到椭圆的方程。
(2)设直线的方程为,联立椭圆方程有

和向量的数量积为零得到结论。
解:(1)由题意,设该椭圆方程为,根据条件有
,所以椭圆的方程为,离心率
(2)设直线的方程为,联立椭圆方程有

,即

于是有
由(1)(2)(3)得,,经检验符合
所以直线
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

(本小题12分)
如图,抛物线的焦点到准线的距离与椭圆的长半轴相等,设椭圆的右顶点为在第一象限的交点为为坐标原点,且的面积为

(1)求椭圆的标准方程;
(2)过点作直线两点,射线分别交两点.
(I)求证:点在以为直径的圆的内部;
(II)记的面积分别为,问是否存在直线,使得?请说明理由.

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

已知椭圆是其左顶点和左焦点,是圆上的动点,若,则此椭圆的离心率是       

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(本小题14分)已知直线经过椭圆的左顶点A和上顶点D,椭圆的右顶点为,点是椭圆上位于轴上方的动点,直线与直线分别交于两点。

(I)求椭圆的方程;
(Ⅱ)求线段的长度的最小值;
(Ⅲ)当线段的长度最小时,在椭圆上是否存在这样的点,使得的面积为?若存在,确定点的个数,若不存在,说明理由。

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

一圆形纸片的圆心为点,点是圆内异于点的一定点,点是圆周上一点.把纸片折叠使点重合,然后展平纸片,折痕与交于点.当点运动时点的轨迹是(  )
A.椭圆B.双曲线C.抛物线D.圆

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

椭圆中,过焦点且垂直于长轴的直线被椭圆截得的线段长为,焦点到相应准线的
距离也为,则该椭圆的离心率为          

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(本小题满分13分)设椭圆的右焦点为,直线轴交于点,若(其中为坐标原点).
(1)求椭圆的方程;
(2)设是椭圆上的任意一点,为圆的任意一条直径(为直径的两个端点),求的最大值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

若椭圆短轴上的两顶点与一焦点的连线互相垂直,则离心率等于(   )
A.B.C.D.

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

.经过点M(1,1)作直线l交椭圆于A、B两点,且M为AB的中点,则直线l方程为                       .

查看答案和解析>>

同步练习册答案