【题目】如图,在四棱锥中,平面平面,,,.
(1)求证:;
(2)若为线段上的一点,,,,求平面与平面所成锐二面角的余弦值.
【答案】(1)证明见解析(2)
【解析】
(1)设交于点,证明平面内的两条相交直线即可得到线面垂直,再由线面垂直的性质,可证明线线垂直;
(2)找到三条两两互相垂直的直线,以为原点,以射线为轴,轴,轴正半轴建立空间直角坐标系,求出平面的法向量,平面的法向量,求法向量夹角的余弦值,即可求得答案.
设交于点,,,所以,所以,在中,
且,得,即,
又平面平面,平面平面,平面,
所以平面,
又平面,所以
(2)平面平面,平面平面,平面,,所以平面,
以为原点,以射线为轴,轴,轴正半轴建立空间直角坐标系,,,,,,,
设平面的法向量为,则,
取,得
设平面的法向量为,
则,取,得,
设所求角为,则,
所求的锐二面角余弦值为
科目:高中数学 来源: 题型:
【题目】一个调查学生记忆力的研究团队从某中学随机挑选100名学生进行记忆测试,通过讲解100个陌生单词后,相隔十分钟进行听写测试,间隔时间(分钟)和答对人数的统计表格如下:
时间(分钟) | 10 | 20 | 30 | 40 | 50 | 60 | 70 | 80 | 90 | 100 |
答对人数 | 98 | 70 | 52 | 36 | 30 | 20 | 15 | 11 | 5 | 5 |
1.99 | 1.85 | 1.72 | 1.56 | 1.48 | 1.30 | 1.18 | 1.04 | 0.7 | 0.7 |
时间与答对人数的散点图如图:
附:,,,,,对于一组数据,,……,,其回归直线的斜率和截距的最小二乘估计分别为:,.请根据表格数据回答下列问题:
(1)根据散点图判断,与,哪个更适宣作为线性回归类型?(给出判断即可,不必说明理由)
(2)根据(1)的判断结果,建立与的回归方程;(数据保留3位有效数字)
(3)根据(2)请估算要想记住的内容,至多间隔多少分钟重新记忆一遍.(参考数据:,)
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】2019年庆祝中华人民共和国成立70周年阅兵式彰显了中华民族从站起来、富起来迈向强起来的雄心壮志.阅兵式规模之大、类型之全均创历史之最,编组之新、要素之全彰显强军成就.装备方阵堪称“强军利刃”“强国之盾”,见证着人民军队迈向世界一流军队的坚定步伐.此次大阅兵不仅得到了全中国人的关注,还得到了无数外国人的关注.某单位有10位外国人,其中关注此次大阅兵的有8位,若从这10位外国人中任意选取3位做一次采访,则被采访者中至少有2位关注此次大阅兵的概率为( )
A.B.C.D.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】设是函数定义域的一个子集,若存在,使得成立,则称是的一个“准不动点”,也称在区间上存在准不动点,已知,.
(1)若,求函数的准不动点;
(2)若函数在区间上存在准不动点,求实数的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知椭圆C:的离心率,椭圆C上的点到其左焦点的最大距离为.
(Ⅰ)求椭圆C的方程;
(Ⅱ)过点A作直线与椭圆相交于点B,则轴上是否存在点P,使得线段,且?若存在,求出点P坐标;否则请说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】设Tn为数列{an}的前n项的积,即Tn=a1a2…an.
(1)若Tn=n2,求数列{an}的通项公式;
(2)若数列{an}满足Tn=(1﹣an)(n∈N*),证明数列为等差数列,并求{an}的通项公式;
(3)数列{an}共有100项,且满足以下条件:
①;
②(1≤k≤99,k∈N*).
(Ⅰ)求的值;
(Ⅱ)试问符合条件的数列共有多少个?为什么?
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某公园草坪上有一扇形小径(如图),扇形半径为,中心角为,甲由扇形中心出发沿以每秒2米的速度向快走,同时乙从出发,沿扇形弧以每秒米的速度向慢跑,记秒时甲、乙两人所在位置分别为,,通过计算,判断下列说法是否正确:
(1)当时,函数取最小值;
(2)函数在区间上是增函数;
(3)若最小,则;
(4)在上至少有两个零点;
其中正确的判断序号是______(把你认为正确的判断序号都填上)
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com