精英家教网 > 高中数学 > 题目详情

【题目】如图,在四棱锥中,平面平面

1)求证:

2)若为线段上的一点,,求平面与平面所成锐二面角的余弦值.

【答案】(1)证明见解析(2)

【解析】

1)设于点,证明平面内的两条相交直线即可得到线面垂直,再由线面垂直的性质,可证明线线垂直;

(2)找到三条两两互相垂直的直线,以为原点,以射线轴,轴,轴正半轴建立空间直角坐标系,求出平面的法向量,平面的法向量,求法向量夹角的余弦值,即可求得答案.

于点,所以,所以,在中,

,得,即

又平面平面,平面平面平面

所以平面

平面,所以

2)平面平面,平面平面平面,所以平面

为原点,以射线轴,轴,轴正半轴建立空间直角坐标系,,,

设平面的法向量为,则

,得

设平面的法向量为

,取,得

设所求角为,则

所求的锐二面角余弦值为

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】一个调查学生记忆力的研究团队从某中学随机挑选100名学生进行记忆测试,通过讲解100个陌生单词后,相隔十分钟进行听写测试,间隔时间(分钟)和答对人数的统计表格如下:

时间(分钟)

10

20

30

40

50

60

70

80

90

100

答对人数

98

70

52

36

30

20

15

11

5

5

1.99

1.85

1.72

1.56

1.48

1.30

1.18

1.04

0.7

0.7

时间与答对人数的散点图如图:

附:,对于一组数据……,其回归直线的斜率和截距的最小二乘估计分别为:.请根据表格数据回答下列问题:

1)根据散点图判断,,哪个更适宣作为线性回归类型?(给出判断即可,不必说明理由)

2)根据(1)的判断结果,建立的回归方程;(数据保留3位有效数字)

3)根据(2)请估算要想记住的内容,至多间隔多少分钟重新记忆一遍.(参考数据:

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】2019年庆祝中华人民共和国成立70周年阅兵式彰显了中华民族从站起来、富起来迈向强起来的雄心壮志.阅兵式规模之大、类型之全均创历史之最,编组之新、要素之全彰显强军成就.装备方阵堪称强军利刃”“强国之盾,见证着人民军队迈向世界一流军队的坚定步伐.此次大阅兵不仅得到了全中国人的关注,还得到了无数外国人的关注.某单位有10位外国人,其中关注此次大阅兵的有8位,若从这10位外国人中任意选取3位做一次采访,则被采访者中至少有2位关注此次大阅兵的概率为(

A.B.C.D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】是函数定义域的一个子集,若存在,使得成立,则称的一个“准不动点”,也称在区间上存在准不动点,已知.

(1)若,求函数的准不动点;

(2)若函数在区间上存在准不动点,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数关于的不等式的解集是,若,则的取值范围是________.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆C的离心率,椭圆C上的点到其左焦点的最大距离为.

(Ⅰ)求椭圆C的方程;

(Ⅱ)过点A作直线与椭圆相交于点B,则轴上是否存在点P,使得线段,且?若存在,求出点P坐标;否则请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知定义在上的偶函数满足,且时,,则函数上的所有零点之和为(

A.B.C.D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】Tn为数列{an}的前n项的积,即Tn=a1a2an

1)若Tn=n2,求数列{an}的通项公式;

2)若数列{an}满足Tn=1an)(nN*),证明数列为等差数列,并求{an}的通项公式;

3)数列{an}共有100项,且满足以下条件:

1k99kN*).

(Ⅰ)求的值;

(Ⅱ)试问符合条件的数列共有多少个?为什么?

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某公园草坪上有一扇形小径(如图),扇形半径为,中心角为,甲由扇形中心出发沿以每秒2米的速度向快走,同时乙从出发,沿扇形弧以每秒米的速度向慢跑,记秒时甲、乙两人所在位置分别为,,通过计算,判断下列说法是否正确:

(1)当时,函数取最小值;

(2)函数在区间上是增函数;

(3)若最小,则

(4)上至少有两个零点;

其中正确的判断序号是______(把你认为正确的判断序号都填上)

查看答案和解析>>

同步练习册答案