精英家教网 > 高中数学 > 题目详情

【题目】已知函数.

(Ⅰ)讨论函数内的单调性;

(Ⅱ)若存在正数,对于任意的,不等式恒成立,求正实数的取值范围.

【答案】(Ⅰ)当时, 内单调递增,当时, 内单调递减,在内单调递增.(Ⅱ).

【解析】试题分析

(Ⅰ)求导数可得 ,根据的取值情况进行讨论可得函数的单调性.(Ⅱ)在(Ⅰ)中结论的基础上分两种情况讨论求解,首先探求得到区间,通过对函数在此区间上单调性的讨论进一步得到的符号,进而将不等式去掉绝对值后进行讨论分析、排除,然后得到所求的范围即可.

试题解析

(Ⅰ)由题意得

因为,所以

时, ,此时内单调递增.

时,由,此时 单调递减;

,此时 单调递增.

综上,当时, 内单调递增;

时, 内单调递减,在内单调递增.

(Ⅱ)①当时,

由(Ⅰ)可得内单调递增,且

所以对于任意的 .

这时可化为,即.

,得

所以单调递减,且

所以当时, ,不符合题意.

②当时,

由(Ⅰ)可得内单调递减,且

所以存在,使得对于任意的都有.

这时可化为,即.

,则.

(i)若,则上恒成立,

这时内单调递减,且

所以对于任意的都有,不符合题意.

(ii)若,令,得

这时内单调递增,且

所以对于任意的,都有

此时取,则对于任意的,不等式恒成立.

综上可得的取值范围为.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】如图,点在抛物线外,过点作抛物线的两切线,设两切点分别为,记线段的中点为.

(Ⅰ)求切线的方程;

(Ⅱ)证明:线段的中点在抛物线上;

(Ⅲ)设点为圆上的点,当取最大值时,求点的纵坐标.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】定义区间(a,b)[a,b)(a,b][a,b]的长度均为,多个区间并集的长度为各区间长度之和,例如,(1,2) [3,5)的长度d=(2-1)+(5-3)=3. [x]表示不超过x的最大整数,记{x}=x-[x],其中. ,当,不等式解集区间的长度为,则的值为_______

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某教育培训中心共有25名教师,他们全部在校外住宿.为完全起见,学校派专车接送教师们上下班.这个接送任务承包给了司机王师傅,正常情况下王师傅用34座的大客车接送教师.由于每次乘车人数不尽相同,为了解教师们的乘车情况,王师傅连续记录了100次的乘车人数,统计结果如下:

乘车人数

15

16

17

18

19

20

21

22

23

24

25

频数

2

4

4

10

16

20

16

12

8

6

2

以这100次记录的各乘车人数的频率作为各乘车人数的概率.

(Ⅰ)若随机抽查两次教师们的乘车情况,求这两次中至少有一次乘车人数超过18的概率;

(Ⅱ)有一次,王师傅的大客车出现了故障,于是王师傅准备租一辆小客车来临时送一次需要乘车的教师.可供选择的小客车只有20座的型车和22座的型车两种, 型车一次租金为80元, 型车一次租金为90元.若本次乘车教师的人数超过了所租小客车的座位数,王师傅还要付给多出的人每人20元钱供他们乘出租车.以王师傅本次付出的总费用的期望值为依据,判断王师傅租哪种车较合算?

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,四棱锥中, 为等边三角形,且平面平面.

(Ⅰ)证明:

(Ⅱ)若棱锥的体积为,求该四棱锥的侧面积.

【答案】(Ⅰ)证明见解析;(Ⅱ) .

【解析】试题分析】(I)的中点为,连接.利用等腰三角形的性质和矩形的性质可证得,由此证得平面,故,故.(II) 可知是棱锥的高,利用体积公式求得,利用勾股定理和等腰三角形的性质求得的值,进而求得面积.

试题解析】

证明:(Ⅰ)取的中点为,连接

为等边三角形,∴.

底面中,可得四边形为矩形,∴

,∴平面

平面,∴.

,所以.

(Ⅱ)由面

平面,所以为棱锥的高,

,知

.

由(Ⅰ)知,∴.

.

,可知平面,∴

因此.

的中点,连结,则

.

所以棱锥的侧面积为.

型】解答
束】
20

【题目】已知圆经过椭圆 的两个焦点和两个顶点,点 是椭圆上的两点,它们在轴两侧,且的平分线在轴上, .

(Ⅰ)求椭圆的方程;

(Ⅱ)证明:直线过定点.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知是定义在[-1,1]上的奇函数,且,若任意的,当时,总有

1)判断函数[-1,1]上的单调性,并证明你的结论;

2)解不等式:

3)若对所有的恒成立,其中是常数),求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】 据观测统计,某湿地公园某种珍稀鸟类的现有个数约只,并以平均每年的速度增加.

(1)求两年后这种珍稀鸟类的大约个数;

(2)写出(珍稀鸟类的个数)关于(经过的年数)的函数关系式;

(3)约经过多少年以后,这种鸟类的个数达到现有个数的倍或以上?(结果为整数)(参考数据:)

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】提高过江大桥的车辆通行能力可改善整个城市的交通状况,在一般情况下,大桥上的车流速度v(单位:千米/小时)是车流密度x(单位:辆/千米)的函数,当桥上的车流密度达到200/千米时,造成堵塞,此时车流速度为0;当车流密度不超过20/千米时,车流速度为60千米/小时,研究表明:当20≤x≤200时,车流速度v是车流密度x的一次函数.

1)当0≤x≤200时,求函数vx)的表达式;

2)当车流密度x为多大时,车流量(单位时间内通过桥上某观测点的车辆数,单位:辆/小时)fx=xvx)可以达到最大,并求出最大值.(精确到1/小时).

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,已知双曲线的左右焦点分别为,是双曲线右支上的一点,轴交于点的内切圆在边上的切点为,若,则双曲线的离心率是 ( )

A. 2 B. C. D. 3

查看答案和解析>>

同步练习册答案