精英家教网 > 高中数学 > 题目详情
19.等式$\sqrt{\frac{x}{x-2}}=\frac{\sqrt{x}}{\sqrt{x-2}}$成立的条件是(  )
A.x≠2B.x>0C.x>2D.0<x<2

分析 根据二次根式的性质得到关于x的不等式组,解出即可.

解答 解:由题意得:
$\left\{\begin{array}{l}{x≥0}\\{x-2>0}\end{array}\right.$,解得:x>2,
故选:C.

点评 本题考查了求函数的定义域问题,考查了二次个数的性质,是一道基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

9.若方程|3x-1|=k有两个不同解,则实数k的取值范围是(0,1).

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

10.已知函数 f(x)的定义域为 A,若当f(x1)=f(x2)(x1,x2∈A)时,总有x1=x2,则称 f(x)为单值函数.例如,函数f(x)=2x+1(x∈R)是单值函数.给出下列命题:
①函数f(x)=x2(x∈R)是单值函数;
②函数f(x)=2x(x∈R)是单值函数;③若f(x)为单值函数,x1,x2∈A,且x1≠x2,则f(x1)≠f(x2);
④函数f(x)=$\left\{\begin{array}{l}{\sqrt{x},x≥0}\\{(\frac{1}{2})^{x}-1,x<0}\end{array}\right.$是单值函数.
其中的真命题是②③.(写出所有真命题的编号)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.各项为正数的数列{an} 的前n项和为Sn,且满足:Sn=$\frac{1}{4}$an2+$\frac{1}{2}$an+$\frac{1}{4}$(n∈N+).
(Ⅰ)求an
(Ⅱ)设函数f(n)=$\left\{\begin{array}{l}{{a}_{n},n为奇数}\\{f(\frac{n}{2}),n为偶数}\end{array}\right.$,Cn=f(2n+4)(n∈N+),求数列{Cn}的前n项和Tn..

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

14.函数f(x)=loga(4x-x2-3)(0<a<1)的单调增区间是(2,3).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.如图,三棱柱ABC-A1B1C1的侧棱垂直于底面,底面边长和侧棱长均为2,D,D1分别是BC,B1C1的中点.
(1)求证:AD⊥C1D;
(2)求证:平面ADC1∥平面A1D1B.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

11.若函数f(x+1)的定义域是[-2,4],则函数f(2x-1)的定义域是[0,3].

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

8.某种产品有4只次品和6只正品,每只产品均不同且可区分,今每次取出一只测试,测试后不放回,直到4只次品全测出为止,则最后一只次品恰好在第五次测试时被发现的不同情形有576种.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.对于函数f(x)=a-$\frac{2}{{{2^x}+1}}$(a∈R,a>0,且a≠1).
(1)先判断函数y=f(x)的单调性,再证明之;
(2)实数a=1时,证明函数y=f(x)为奇函数;
(3)求使f(x)=m,(x∈[0,1])有解的实数m的取值范围.

查看答案和解析>>

同步练习册答案