精英家教网 > 高中数学 > 题目详情
7.如图,三棱柱ABC-A1B1C1的侧面AA1B1B为正方形,侧面侧面BB1C1C为菱形,∠CBB1=60°,AB⊥B1C.
(I)求证:平面AA1B1B⊥平面BB1C1C;
(II)若三棱柱ABC-A1B1C1的体积为2$\sqrt{3}$,求点A到平面A1B1C1的距离.

分析 (I)证AB垂直于平面内的两条相交直线,再由线面垂直⇒面面垂直;
(II)求得三棱锥B1-ABC的体积,利用棱柱是由三个体积相等的三棱锥组合而成来求解即可.

解答 (Ⅰ)证明:由侧面AA1B1B为正方形,知AB⊥BB1
又∵AB⊥B1C,BB1∩B1C=B1,∴AB⊥平面BB1C1C,
又∵AB?平面AA1B1B,∴平面AA1B1B⊥BB1C1C.
(Ⅱ)解:设AB=a,点A到平面A1B1C1的距离为h.
由题意,△BB1C是边长为a的等边三角形,在直角三角形ABC中,AB=BC=a,
由(Ⅰ)AB⊥平面BB1C1C,则三棱柱ABC-A1B1C1的体积V=3${V}_{A-B{B}_{1}C}$
∴S△ABC•h=3×$\frac{1}{3}×{S}_{△B{B}_{1}C}×AB$,
∵三棱柱ABC-A1B1C1的体积为2$\sqrt{3}$,
∴$\frac{1}{2}{a}^{2}h=3•\frac{1}{3}•\frac{\sqrt{3}}{4}{a}^{2}•a$=2$\sqrt{3}$
∴a=2,h=$\sqrt{3}$,
∴A到平面A1B1C1的距离为$\sqrt{3}$.

点评 本题考查面面垂直的判定及空间几何体的体积,考查学生分析解决问题的能力,考查学生的计算能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

17.已知函数f(x)=loga(x+1),函数y=g(x)与y=f(x)的图象关于直线x=a对称
(1)求函数g(x)的解析式,并指出其定义域;
(2)设函数h(x)=g(x)-f(-x),若对任意的x∈[0,1),总有h(x)≥3成立,求a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

18.若函数f(x)=x+alnx不是单调函数,则实数a的取值范围是(-∞,0).

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.已知变量x、y呈线性相关关系,且回归直线为$\stackrel{∧}{y}$=3-2x,则x与y是(  )
A.线性正相关关系B.线性负相关关系
C.非线性相关D.无法判定其正负相关关系

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.经调查,某地居民家庭年饮食支出y(单位:千元)对家庭年收入(单位:千元)的回归直线方程y=2.5x+3.2.据此分析,该地居民家庭年收入每增加到1千元,年饮食支出(  )
A.平均增加2.5千元B.平均减少2.5千元C.平均增加3.2千元D.平均减少3.2千元

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.已知函数f(x)=aex-1+|x-a|-1有两个零点,则实数a的取值范围是(  )
A.[-1,1]B.[0,1]C.{-1}∪(0,1]D.{-1}∪[0,1)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.如图,已知四棱台ABCD-A1B1C1D1的上、下底面分别是边长为3和6的正方形,AA1=6,且A1A⊥底面ABCD,点P,Q分别在DD1,BC上,且$\overrightarrow{DP}$=$\frac{2}{3}$$\overrightarrow{D{D}_{1}}$,BQ=4.
(1)证明:PQ∥平面ABB1A1
(2)求二面角P-QD-A的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.已知函数f(x)=x2+ax+b(a,b∈R).
(1)当b<0时,若关于x的方程f(x)=0在区间[-1,1]内有2个不同的实数根,求2a+b的取值范围.
(2)当|f(x)|≤1在[-1,1]上恒成立,都有|x+a|≤M在[-1,1]上恒成立,求M的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.已知函数f(x)为定义域为R的奇函数,当x>0时,f(x)=x+$\root{3}{x}$+1,求f(x).

查看答案和解析>>

同步练习册答案