精英家教网 > 高中数学 > 题目详情
设m,n是两条不同的直线,α,β是两个不同的平面,则下列命题正确的是
 
.(填写所有正确命题的序号)
①m⊥α,n?β,m⊥n⇒α⊥β;
②l?α,m?α,l∩m=A,l∥β,m∥β⇒α∥β;
③l∥α,m∥β,α∥β⇒l∥m;
④α⊥β,α∩β=m,n⊥m⇒n⊥β.
考点:空间中直线与平面之间的位置关系
专题:空间位置关系与距离
分析:对四个命题利用线面垂直和线面平行的性质定理和判定定理分别分析解答.
解答: 解:对于①,由m⊥α,n?β,m⊥n不满足面面垂直的判定定理,所以⇒α⊥β是错误的;
对于②,l?α,m?α,l∩m=A,l∥β,m∥β满足面面平行的判定定理,所以⇒α∥β是正确的;
对于③,l∥α,m∥β,α∥β,由面面平行的性质定理得到l,m可能平行或者异面,所以⇒l∥m是错误的;
对于④,α⊥β,α∩β=m,n⊥m,得到n垂直两个平面的交线,n不一定垂直平面,所以⇒n⊥β是错误的;
故答案为:②.
点评:本题考查了线面垂直、面面平行、面面垂直的性质定理和判定定理的综合运用,熟练掌握相关的定理是关键,属于中档题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

二阶矩阵M对应的变换T将点(2,-2)与(-4,2)分别变换成点(-2,-2)与(0,-4).
①求矩阵M;
②设直线l在变换T作用下得到了直线m:x-y=6,求l的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=Asin(ωx+φ),(A>0,|φ|<
π
2
,ω>0)的图象的一部分如图所示.

(1)求f(x)的表达式;
(2)试写出f(x)的单调减区间及对称轴方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

给出下面4个命题
①各侧面都是正方形的棱柱一定是正棱柱;
②经过球面上不同的两点只能作球的一个大圆;
③两条异面直线的平行投影可平行;
④过平面外的一条直线,只能作一个平面和这个平面平行;
其中正确的个数为(  )
A、1个B、2个C、3个D、4个

查看答案和解析>>

科目:高中数学 来源: 题型:

sin300°=(  )
A、-
3
2
B、
3
2
C、
3
D、
3
3

查看答案和解析>>

科目:高中数学 来源: 题型:

若两直线y=x+2k与y=2x+k+1的交点在圆x2+y2=4上,则k的值是(  )
A、-
1
5
或-1
B、-
1
5
或1
C、-
1
3
或1
D、-2或2

查看答案和解析>>

科目:高中数学 来源: 题型:

桂花树的花是对人体有多种功效和疗效的香型花,也是难得的工业原料.现从某桂花园随机抽样得到80个金桂花产量(金桂是桂花树的一种,花产量指一株树的花产量,单位:克),并绘制出样本频率分布直方图,如图所示.已知这个桂花园有30000株金桂.
(Ⅰ)估计这个桂花园花产量在区间[600,700)的金桂株数.
(Ⅱ)科研发现样本里花产量在区间[300,400)的金桂中出现了2株有害变异金桂.从该样本里花产量在这个区间上的金桂中随机抽取两株,求这两株中至少有一株是有害变异金桂的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x),(x∈R+),满足f(3x)=3f(x).若f(x)=1-|x-2|(1≤x≤3),试计算:
(1)f(99)=
 

(2)集合M={x|f(x)=f(99)}中最小的元素是
 

查看答案和解析>>

科目:高中数学 来源: 题型:

对任意的x∈R,符号[x]表示不大于x的最大整数,如[π]=3,[4]=4,[-2,2]=-3,[x]叫取整函数.那么[log31]+[log32]+[log33]+…+[log329]+[log330]=(  )
A、51B、52C、53D、54

查看答案和解析>>

同步练习册答案