精英家教网 > 高中数学 > 题目详情
3、已知p:关于x的不等式x2+2ax-a>0的解集是R,q:-1<a<0,则p是q的(  )
分析:本题考察的知识点是必要条件、充分条件与充要条件的判断,由关于x的不等式x2+2ax-a>0的解集是R,我们易得对应方的判别式△小于0,由此可构造一个关于a的不等式,解不等式即可得到a的取值范围,与命题q中的a的范围比较后,结合“谁小谁充分,谁大谁必要”的原则,即可得到答案.
解答:解:依题意得△=4a2+4a<0,解得-1<a<0,
即p:-1<a<0,
又因为q:-1<a<0,
所以p是q的充分必要条件.
故选C
点评:判断充要条件的方法是:①若p?q为真命题且q?p为假命题,则命题p是命题q的充分不必要条件;②若p?q为假命题且q?p为真命题,则命题p是命题q的必要不充分条件;③若p?q为真命题且q?p为真命题,则命题p是命题q的充要条件;④若p?q为假命题且q?p为假命题,则命题p是命题q的即不充分也不必要条件.⑤判断命题p与命题q所表示的范围,再根据“谁大谁必要,谁小谁充分”的原则,判断命题p与命题q的关系.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知命题p:关于x的方程x2+mx+
1
2
=0
有两个不等的负根;命题q:函数f(x)=lg[(1-
1
m
)x2+2(m-1)x+m]
的定义域为R.
(1)若命题p、q都是真命题时m的取值范围分别是集合A和集合B,求集合A和集合B;
(2)若命题“(?p)∨(?q)”是假命题,求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知命题P:关于x的方程x2+mx+1=0有两个不等的负数根;命题Q:关于x的方程4x2+4(m-2)x+1=0无实数根.如果命题P和Q有且仅有一个正确,求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知命题p:关于x的方程x2-3x+a=0有两不等实根;命题q:关于x的不等式x2+ax+a>0的解集为R.
(1)若p为真命题且q为假命题,试求a的取值范围;
(2)若“p或q”为真,“p且q”为假,则a的取值范围又是怎样的?

查看答案和解析>>

科目:高中数学 来源:广东省深圳高级中学2010-2011学年高二上学期期中考试数学文科试题 题型:044

已知p:关于x的方程x2+mx+1=0有两个不等的负实根;q:关于x的方程4x2+4(m-2)x+1=0无实根.若p或q为真,p且q为假,求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知命题P:关于x的方程x2+mx+1=0有两个不等的负数根;命题Q:关于x的方程4x2+4(m-2)x+1=0无实数根.如果命题P和Q有且仅有一个正确,求实数m的取值范围.

查看答案和解析>>

同步练习册答案