【题目】如图,已知四棱锥,是等边三角形,,,,,是的中点.
(Ⅰ)证明:直线平面;
(Ⅱ)求直线与平面所成角的正弦值.
【答案】(Ⅰ)证明见解析;(Ⅱ)
【解析】
(Ⅰ)先证明与平面中的一条线平行,再应用线面平行的判定定理即可证得结果;
(Ⅱ)过点作交的延长线于点,过点作交的延长线于点,过点作于点,由此可推出为点到平面的距离,然后通过解直角三角形求解即可.
(Ⅰ)证明:取的中点,连接,,
在中,,分别是,的中点,
所以且,
又且,
所以,且,
所以四边形为平行四边形,
所以,
又平面,平面,
故平面.
(Ⅱ)过点作交的延长线于点,过点作交的延长线于点,
由,,,
得平面,所以平面平面,
过点作于点,则平面,
由知,点到平面的距离等于,
设,则由知,,,
又,所以平面,
所以,
又,,所以,
所以,又,
,则,
,
即,解得,
在中,,,,
可得,
设直线与平面所成角为,则,
即直线与平面所成角的正弦值为.
科目:高中数学 来源: 题型:
【题目】培养某种水生植物需要定期向培养植物的水中加入物质,已知向水中每投放1个单位的物质,(单位:天)时刻后水中含有物质的量增加,与的函数关系可近似地表示为关系可近似地表示为.根据经验,当水中含有物质的量不低时,物质才能有效发挥作用.
(1)若在水中首次投放1个单位的物质,计算物质能持续有效发挥作用几天?
(2)若在水中首次投放1个单位的物质,第8天再投放1个单位的物质,试判断第8天至第12天,水中所含物质的量是否始终不超过,并说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在平面直角坐标系xOy中,直线l的参数方程为(t为参数),以原点O为极点,x正半轴为极轴建立极坐标系,曲线的极坐标方程为.
(1)求直线l的普通方程和曲线C的直角坐标方程;
(2)设P(0,-1),直线l与C的交点为M,N,线段MN的中点为Q,求.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某公园计划在矩形空地上建造一个扇形花园如图①所示,矩形的边与边的长分别为48米与40米,扇形的圆心为中点,扇形的圆弧端点,分别在与上,圆弧的中点在上.
(1)求扇形花园的面积(精确到1平方米);
(2)若在扇形花园内开辟出一个矩形区域为花卉展览区.如图②所示,矩形的四条边与矩形的对应边平行,点,分别在,上,点,在扇形的弧上.某同学猜想:当矩形面积最大时,两矩形与的形状恰好相同(即长与宽之比相同),试求花卉展览区面积的最大值,并判断上述猜想是否正确(请说明理由).
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知正项数列中,,点在抛物线上.数列中,点在经过点,以为方向向量的直线上.
(1)求数列,的通项公式;
(2)若,问是否存在,使得成立?若存在,求出的值;若不存在,说明理由;
(3)对任意的正整数,不等式成立,求正数的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,有一种赛车跑道类似“梨形”曲线,由圆弧和线段AB,CD四部分组成,在极坐标系Ox中,A(2,),B(1,),C(1,),D(2,),弧所在圆的圆心分别是(0,0),(2,0),曲线M1是弧,曲线M2是弧.
(1)分别写出M1,M2的极坐标方程:
(2)点E,F位于曲线M2上,且,求△EOF面积的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】四棱锥P﹣ABCD中,AB∥CD,AB⊥BC,AB=BC=1,PA=CD=2,PA⊥底面ABCD,E在PB上.
(1)证明:AC⊥PD;
(2)若PE=2BE,求三棱锥P﹣ACE的体积.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com