精英家教网 > 高中数学 > 题目详情
设p:|4x-3|≤1;q:x2-(2a+1)x+a(a+1)≤0.若┐p是┐q的必要而不充分条件,则实数a的取值范围是( )
A.[0,]
B.(0,
C.(-∞,0]∪[,+∞)
D.(-∞,0)∪(,+∞)
【答案】分析:先化简命题p,q即解绝对值不等式和二次不等式,再求出┐p,┐q,据已知写出两集合端点的大小关系,列出不等式解得.
解答:解:∵p:|4x-3|≤1,
∴p:≤x≤1,
∴┐p:x>1或x<
∵q:x2-(2a+1)x+a(a+1)≤0,
∴q:a≤x≤a+1,
┐q:x>a+1或x<a.
又∵┐p是┐q的必要而不充分条件,
即┐q⇒┐p,而┐p推不出┐q,
⇒0≤a≤
故选项为A.
点评:本题考查解绝对值不等式和二次不等式;考查充要条件的转化.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

设p:|4x-3|≤1;q:x2-(2a+1)x+a(a+1)≤0.若┐p是┐q的必要而不充分条件,则实数a的取值范围是(  )
A、[0,
1
2
]
B、(0,
1
2
C、(-∞,0]∪[
1
2
,+∞)
D、(-∞,0)∪(
1
2
,+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:

设p:|4x-3|≤1;q:x2-(2a+1)x+a(a+1)≤0.若¬p是¬q的必要而不充分条件,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

设p:|4x-3|≤1;q:(x-a)(x-a-1)≤0,若p是q的充分不必要条件,则实数a的取值范围是
[0,
1
2
]
[0,
1
2
]

查看答案和解析>>

科目:高中数学 来源: 题型:

设p:|4x-3|≤1,q:x2-(2a+1)x+a(a+1)≤0,若p是q的充分而不必要条件,则实数a的取值范围是
 

查看答案和解析>>

科目:高中数学 来源:2012-2013学年辽宁省本溪一中高三(上)第二次月考数学试卷(理科)(解析版) 题型:选择题

设p:|4x-3|≤1;q:x2-(2a+1)x+a(a+1)≤0.若┐p是┐q的必要而不充分条件,则实数a的取值范围是( )
A.[0,]
B.(0,
C.(-∞,0]∪[,+∞)
D.(-∞,0)∪(,+∞)

查看答案和解析>>

同步练习册答案