精英家教网 > 高中数学 > 题目详情

【题目】已知函数f(x)=ln(2x+a2﹣4)的定义域、值域都为R,则a取值的集合为

【答案】{﹣2,2}
【解析】解:由题意,函数f(x)=ln(2x+a2﹣4)的定义域、值域都为R,即2x+a2﹣4>0在x∈R上恒成立.

∵x∈R,2x>0,

要使2x+a2﹣4值域为R,

∴只需4﹣a2=0

得:a=±2.

∴得a取值的集合为{﹣2,2}.

所以答案是{﹣2,2}.

【考点精析】掌握函数的定义域及其求法和函数的值域是解答本题的根本,需要知道求函数的定义域时,一般遵循以下原则:①是整式时,定义域是全体实数;②是分式函数时,定义域是使分母不为零的一切实数;③是偶次根式时,定义域是使被开方式为非负值时的实数的集合;④对数函数的真数大于零,当对数或指数函数的底数中含变量时,底数须大于零且不等于1,零(负)指数幂的底数不能为零;求函数值域的方法和求函数最值的常用方法基本上是相同的.事实上,如果在函数的值域中存在一个最小(大)数,这个数就是函数的最小(大)值.因此求函数的最值与值域,其实质是相同的.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知函数f(x)是定义在R上的奇函数,且当x≤0时,f(x)=x2+2x.

(1)求函数f(x)(x∈R)的解析式;
(2)现已画出函数f(x)在y轴左侧的图象,如图所示,请补全完整函数f(x)的图象;
(3)求使f(x)>0的实数x的取值集合.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如果将函数f(x)=sin2x图象向左平移φ(φ>0)个单位,函数g(x)=cos(2x﹣ )图象向右平移φ个长度单位后,二者能够完全重合,则φ的最小值为

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】执行如图所示的程序框图,若输入n的值为10,则输出S的值是(
A.45
B.46
C.55
D.56

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆 ,动直线
(1)若动直线l与椭圆C相交,求实数m的取值范围;
(2)当动直线l与椭圆C相交时,证明:这些直线被椭圆截得的线段的中点都在直线3x+2y=0上.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】给出一个如图所示的程序框图,若要使输入的x值与输出的y值相等,则这样的x值的个数是(

A.5
B.4
C.3
D.2

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知A={x|x2+x>0},B={x|x2+ax+b≤0},且A∩B={x|0<x≤2},A∪B=R,求a、b的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】下面四个命题: ①若直线a,b异面,b,c异面,则a,c异面;
②若直线a,b相交,b,c相交,则a,c相交;
③若a∥b,则a,b与c所成的角相等;
④若a⊥b,b⊥c,则a∥c.
其中真命题的个数为(
A.4
B.3
C.2
D.1

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】光线l1从点M(﹣1,3)射到x轴上,在点P(1,0)处被x轴反射,得到光线l2 , 再经直线x+y﹣4=0反射,得到光线l3 , 求l2和l3的方程.

查看答案和解析>>

同步练习册答案