精英家教网 > 高中数学 > 题目详情
19.已知a>b>0,则不等式x2-($\frac{1}{a}$+$\frac{1}{b}$)x+$\frac{1}{ab}$<0的解集是($\frac{1}{a}$,$\frac{1}{b}$).

分析 x2-($\frac{1}{a}$+$\frac{1}{b}$)x+$\frac{1}{ab}$<0即为(x-$\frac{1}{a}$)(x-$\frac{1}{b}$)<0,注意比较根的大小.

解答 解:不等式x2-($\frac{1}{a}$+$\frac{1}{b}$)x+$\frac{1}{ab}$<0即为(x-$\frac{1}{a}$)(x-$\frac{1}{b}$)<0,
∵a>b>0,
∴$\frac{1}{b}$>$\frac{1}{a}$,
∴不等式x2-($\frac{1}{a}$+$\frac{1}{b}$)x+$\frac{1}{ab}$<0的解集是($\frac{1}{a}$,$\frac{1}{b}$),
故答案为:($\frac{1}{a}$,$\frac{1}{b}$).

点评 本题考查一元二次不等式的解法,难点在于对不等式左端分解因式,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

9.设实数x,y满足$\left\{\begin{array}{l}{y≤2x+2}\\{x+y-2≥0}\\{x≤2}\end{array}\right.$,则3x-y的最大值是(  )
A.-2B.0C.2D.6

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.已知函数y=3x2+1
(1)求函数的定义域;
(2)判断f(x)的奇偶性并证明;
(3)若f(a)=4,求f(-a)的值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

7.若α,β都是锐角,且cosα=$\frac{\sqrt{5}}{5}$,sin(α一β)=$\frac{3\sqrt{10}}{10}$,则cosβ=$\frac{7\sqrt{2}}{10}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.已知集合A仅由三个元素a,a+d,a+2d组成,集合B也仅由三个元素a,aq,aq2组成,其中a为常数,若A=B,求d、q的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.已知函数f(x)=ax+$\frac{1}{x}$,且此函数的图象过点A(2,$\frac{5}{2}$).
(1)求实数a的值;
(2)判断f(x)的奇偶性;
(3)讨论函数f(x)在[1,+∞)的单调性,并证明你的结论.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.已知函数f(2-x)=x2-x-1,则f(x)等于(  )
A.x2+1B.x2-x-1C.x2-3x+1D.x2-2x+1

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.在平面直角坐标xoy 系中,以O为极点,x轴正半轴为极轴建立极坐标系,曲线C的极坐标方程为ρcosθ=2sin2θ.
(Ⅰ)求曲线C的直角坐标方程;
(Ⅱ)若曲线C1:$\left\{\begin{array}{l}x=3+rcosα\\ y=-2+rsinα\end{array}$(α为参数)与曲线C所表示的图形都相切,求r的值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.下列说法正确的是(  )
A.命题“若a>b,则a2>b2”的否命题是“若a<b,则a2<b2
B.命题“若a>b,则a2>b2”的逆命题是“若a≤b,则a2≤b2
C.命题“?x∈R,cosx<1”的否定命题是“?x0∈R,cosx0≥1”
D.命题“?x∈R,cosx<1”的否定命题是“?x0∈R,cosx0>1”

查看答案和解析>>

同步练习册答案