精英家教网 > 高中数学 > 题目详情
给出下列四个结论:
①函数y=ax(a>0且a≠1)与函数y=logaax(a>0且a≠1)的定义域相同;
②函数y=
1
2
+
1
2x-1
(x≠0)
是奇函数;
③函数y=sin(-2x)在区间[
π
4
4
]
上是减函数;
④函数y=cos|x|是周期函数;
⑤对于命题p:?x∈R,使得x2+x+1<0,则?p:?x∈R,均有x2+x+1≥0.(其中“?”表示“存在”,“?”表示“任意”).
其中错误结论的序号是
.(填写你认为错误的所有结论序号)
分析:对各个选项依次加以判断:对于①,函数y=ax(a>0且a≠1)的定义域与函数y=logaax(a>0且a≠1)的定义域都是R,命题正确;对于②,令函数f(x)=
1
2
+
1
2x-1
(x≠0)
,可以证明得f(-x)=
2 -x+1
2 -x-1
=
2x+1
1-2x
=-f(x),故原函数是奇函数;对于③,函数y=sin(-2x)=-sin(2x)在区间[
π
4
4
]
上是增函数,命题错误;对于④,由于余弦函数是偶函数,故函数y=cos|x|=cosx,函数是周期函数最小正同期为2π,命题正确;对于⑤,这是一个含有量词的命题,否定时要先改下量词,再否定结论,由此可得命题⑤正确.说明只有③是错误的.
解答:解:对于①,函数y=ax(a>0且a≠1)的定义域为R,
函数y=logaax(a>0且a≠1)的定义域也是R,
故两个函数定义域相同,命题正确;
对于②,令函数f(x)=
1
2
+
1
2x-1
(x≠0)

f(x)=
1
2
+
1
2x-1
=
2 x+1
2 x-1

f(-x)=
2 -x+1
2 -x-1
=
2x+1
1-2x
=-f(x),故原函数是奇函数;
对于③,函数y=sin(-2x)=-sin(2x)在
区间[
π
4
4
]
上是增函数,命题错误;
对于④,由于余弦函数是偶函数,故函数y=cos|x|=cosx,
函数是周期函数最小正同期为2π,命题正确;
对于⑤,对于命题p:?x∈R,使得x2+x+1<0,
这是一个含有量词的命题,否定时要先改下量词,再否定结论
则?p:?x∈R,均有x2+x+1≥0,命题⑤正确.
故答案为:③
点评:本题考查了命题真假的判断,其中包含了函数的奇偶性与单调性,含有量词的命题等等,知识点较多,属于中档题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

给出下列四个结论:①函数y=ax(a>0且a≠1)与函数y=logaax(a>0且a≠1)的定义域相同;②函数y=k3x(k>0)(k为常数)的图象可由函数y=3x的图象经过平移得到;③函数y=
1
2
+
1
2x-1
(x≠0)是奇函数且函数y=x(
1
3x-1
+
1
2
)
(x≠0)是偶函数;④函数y=cos|x|是周期函数.其中正确结论的序号是
 
.(填写你认为正确的所有结论序号)

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,正方体ABCD-A1B1C1D1的棱长为1,线段AC1上有两个动点E,F,且EF=
3
3
.给出下列四个结论:
①BF∥CE;
②CE⊥BD;
③三棱锥E-BCF的体积为定值;
④△BEF在底面ABCD内的正投影是面积为定值的三角形;
其中,正确结论的个数是(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

在正三棱锥P-ABC中,D为PA的中点,O为△ABC的中心,给出下列四个结论:①OD∥平面PBC;  ②OD⊥PA;③OD⊥BC;  ④PA=2OD.其中正确结论的序号是
③④
③④

查看答案和解析>>

科目:高中数学 来源: 题型:

(2010•马鞍山模拟)给出下列四个结论:
①命题''?x∈R,x2-x>0''的否定是''?x∈R,x2-x≤0''
②“若am2<bm2,则a<b”的逆命题为真;
③已知直线l1:ax+2y-1=0,l1:x+by+2=0,则l1⊥l2的充要条件是
ab
=-2

④对于任意实数x,有f(-x)=-f(x),g(-x)=g(x)且x>0时,f'(x)>0,g'(x)>0,则x<0时,f'(x)>g'(x).
其中正确结论的序号是
①④
①④
(填上所有正确结论的序号)

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•宁波二模)已知平面α、β、γ、和直线l,m,且l⊥m,α⊥γ,α∩γ=m,γ∩β=l;给出下列四个结论:①β⊥γ ②l⊥α③m⊥β;④α⊥β.其中正确的是(  )

查看答案和解析>>

同步练习册答案