精英家教网 > 高中数学 > 题目详情
3.在一段时间内有2000辆车通过高速公路上的某处,现随机抽取其中的200辆进行车速统计,统计结果如下面的频率分布直方图所示.若该处高速公路规定正常行驶速度为90km/h~120km/h,试估计2000辆车中,在这段时间内以正常速度通过该处的汽车约有(  )
A.30辆B.300辆C.170辆D.1700辆

分析 由频率分布直方图求出在这段时间内以正常速度通过该处的汽车的频率,由此能估计2000辆车中,在这段时间内以正常速度通过该处的汽车约有多少辆.

解答 解:由频率分布直方图得:
在这段时间内以正常速度通过该处的汽车的频率为(0.03+0.035+0.02)×10=0.85,
∴估计2000辆车中,在这段时间内以正常速度通过该处的汽车约有:2000×0.85=1700(辆).
故选:D.

点评 本题考查频率分布直方图的应用,是基础题,解题时要认真审题,注意频率分布直方图的性质的合理运用.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

13.已知数列{an}中,${a_1}=1,{a_{n+1}}=\frac{1}{{1+{a_n}}}$,若利用下面程序框图计算该数列的第2016项,则判断框内的条件是(  )
A.n≤2014B.n≤2016C.n≤2015D.n≤2017

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

14.已知等比数列{an}是递增数列,且${a_1}{a_{13}}+2{a_7}^2=4π$,则tan(a2a12)=$\sqrt{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.执行如图所示的程序框图,则输出的i值为(  )
A.3B.4C.5D.6

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

18.已知A,B为圆C:(x-m)2+(y-n)2=9(m,n∈R)上两个不同的点(C为圆心),且满足$|\overrightarrow{CA}+\overrightarrow{CB}|=2\sqrt{5}$,则|AB|=4.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

8.在△ABC中,AB=AC,D为线段AC的中点,若BD的长为定值l,则△ABC面积的最大值为$\frac{2}{3}$$\sqrt{l}$(用l表示).

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.已知集合A={x|x>1},B={x|(x+1)(x-2)<0},则A∪B=(  )
A.{x|x>-1}B.{x|-1<x≤1}C.{x|-1<x<2}D.{x|1<x<2}

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.已知向量$\overrightarrow{a}$=(1,2),$\overrightarrow{b}$=(-1,m),若$\overrightarrow{a}$⊥$\overrightarrow{b}$,则m的值为(  )
A.-2B.2C.$\frac{1}{2}$D.$-\frac{1}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.已知函数f(x)=$\frac{alnx+b}{e^x}$(a,b为常数,无理数e=2.71828…是自然对数的底数),曲线y=f(x)在点(1,f(1))处的切线方程是y=$\frac{1}{e}$.
(1)求a,b的值;
(2)证明不等式1-x-xlnx<$\frac{e^x}{x+1}(1+{e^{-2}})$.

查看答案和解析>>

同步练习册答案